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Abstract

Molecular characterization of a biological sample, e.g., with omics approaches, is fundamental for the development and
implementation of personalized and precision medicine approaches. In this context, quality assessment is one of the most
critical aspects. Accurate performance and interpretation of omics techniques is based on consensus, harmonization, and
standardization of protocols, procedures, data analysis and reference values and materials. EATRIS, the European Infra-
structure for Translational Medicine (www.EATRIS.eu), brings together resources and services to support researchers in
developing their biomedical discoveries into novel translational tools and interventions for better health outcomes. Here we
describe the efforts within the Horizon 2020 EATRIS-Plus project and activities of member facilities of EATRIS towards
quality assessment of pre-clinical sample processing, clinical omics data generation, multi-omics data integration, and dis-
semination of the resources in a Multi-Omics Toolbox, which is the principal deliverable of the EATRIS-Plus project for
the consolidation of EATRIS towards translational medicine.

Keywords Multi-omics - Quality - Reference samples - European infrastructure for translational medicine - Multi-omics
toolbox

Abbreviations LC-MS Liquid chromatography-mass spectroscopy
BBMRI European biobanking research MOTBX Multi-omics toolbox
infrastructure OMOP Observational medical outcomes data
Cv Coefficient of variation model
DNA Deoxyribonucleic acid PC Principal component
EATRIS European infrastructure for translational PT Proficiency testing
medicine QA Quality assessment
EJPRD IMT European joint programme rare diseases qRT-PCR Quantitative reverse transcription polymer-
innovation management toolbox ase chain reaction
EQA External quality assessment RC Relative correlation
FAIR Findable, accessible, interoperable, and RNA Ribonucleic acid
reusable SNR Signal-to-noise ratio
FFPE Formalin-fixed paraffin-embedded SOP Standard operating procedure
HTA Health technology assessment
IBBL Integrated BioBank of Luxembourg
Introduction
Authors are listed in alphabetical order by last name. Precision medicine relies on sensitive and specific detection

of biological variables that may support diagnosis, prog-
nosis, and prediction of therapy response. In this context,
omics technologies, which provide qualitative and quantita-
https://www.eatris.eu tive information on thousands of molecular entities such as
nucleic acids, proteins, and metabolites in a given biological
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sample, have proven invaluable tools. Moreover, two or more
omics technologies may be integrated into multi-omics
approaches, thus increasing the possibility of detection of
molecular signatures, and providing a more comprehensive
view of the molecular portrait and biomarkers of phenotype
and the health status of an individual. Clearly, the accuracy
of such a type of molecular diagnosis demands a high qual-
ity of data. This is becoming increasingly crucial, given the
widespread use of omics approaches in routine diagnostics
and the progressive expansion in the clinical applications. In
addition to making data findable, accessible, interoperable,
and reusable (FAIR-principles, https://www.go-fair.org/
fair-principles) (van der Velde et al. 2022; Wilkinson et al.
2016), assuring a minimal level of data quality is essential
for further use towards the benefit of individuals in health-
care and clinical care.

Integrated multi-omics data analysis and interpreta-
tion require careful design of experiments and associated
data analysis procedures to enable optimal use of research
resources. Importantly, quality needs to be assessed and
maintained throughout the whole process of generation and
analysis of multi-omics approaches. In this regard, several
initiatives have been undertaken to promote best practices,
ranging from a proper definition of the experimental ques-
tion and study design, sample handling, data analysis and
stewardship, and re-use of approaches and data. The excep-
tional structure of European Infrastructure for Translational
Medicine (EATRIS), which spans access to technologies,
expertise, and services in most areas of biomedical research
and thus overarches the process of personalized medicine,
provides an integrative platform to prevent siloing, thereby
ensuring services and quality assurance along the entire
translational trajectory from conception and evaluation of
a study to the data re-use (Fig. 1).

The EATRIS-Plus project was launched to deliver innova-
tive scientific tools to support the long-term sustainability

strategy of EATRIS as one of Europe’s key research infra-
structures for Personalized Medicine. As part of the EAT-
RIS-Plus project, a multi-omics dataset from about 100
healthy individuals was generated and compiled. The data
of this pilot project are being made available for further
analyses by stakeholders involved in biomedical research,
healthcare, and drug development. The multi-omics study
was based on samples collected from volunteers within the
Czech Genome Project (https://czechgenome.iabio.eu/).
Here we outline and discuss the efforts that the EATRIS-
Plus initiative took to address comparative quality assess-
ment (QA) of omics data generation and analysis. Proce-
dures and results of this initiative have been compiled in the
Multi-Omics Toolbox (MOTBX) (https://motbx.eatris.eu),
(see below).

Proficiency Testing for Assessing Pre-Analytical
Sample Processing Methods

Proficiency Testing (PT) programs are external quality
assessment (EQA) tools that aim to evaluate the perfor-
mance of laboratories in conducting specific measurements
or tests, ensuring ongoing quality monitoring, and promot-
ing the standardization of procedures to achieve greater con-
sistency and reproducibility in results (Miller et al. 2011).
Participation in PT programs enables laboratories to
gauge the strengths and weaknesses of their procedures
by comparing performance and reproducibility of their
results with those of their peers and allowing to validate
and enhance performance, identify potential issues in test-
ing and processing or technical problems with equipment or
reagents, compare and harmonize methods and procedures,
assess precision and accuracy, evaluate operator capabili-
ties, provide staff education, and instill confidence in labo-
ratory staff and users (Analytical Method Committee 2010;
Brookman et al. 2011). PT programs can also offer valuable

Fig.1 The translational bio-
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insights into method-trueness, particularly in cases where
reference materials are not available, thus supporting ana-
lytical method validation (Analytical Method Committee
2010).

PT programs play a crucial role in the quality manage-
ment system of laboratories by ensuring consistent deliv-
ery of high-quality data and monitoring data reliability.
Laboratories in which the results deviate significantly for
the expected values (high z-scores) necessitate prompt cor-
rective actions to be taken. To achieve this, implementing a
comprehensive set of measures is essential. These measures
encompass the utilization of standard operating procedures
(SOPs) and validated protocols, incorporating internal qual-
ity controls such as reference materials and control charts,
active participation in PT programs, and obtaining certifica-
tion or accreditation according to recognized standards such
as ISO15189/IEC, ISO/IEC 17025 and ISO 9001 (Meggen-
dorfer et al. 2022). Indeed, it has been demonstrated that
laboratories engaged in PT programs exhibit robust internal
quality control procedures and consistently achieve better
z-scores (Taverniers et al. 2004; Verderio et al. 2022).

In the context of EATRIS-Plus, a PT program for bio-
specimen processing has been established by the Integrated
BioBank of Luxembourg (IBBL, https://www.lih.lu/en/trans
lational-medicine/translational-medicine-operations-hub/integ
rated-biobank-of-luxembourg-ibbl/; https://biospecimenpt.
ibbl.1u/) to ensure the fitness-for-purpose of samples for the
down-stream omics analysis. From 2020 to 2022, two EAT-
RIS-Plus partners involved in omics analyses were enrolled in
26 processing schemes. The aim was to compare the efficiency
of the sample processing methods to ensure the validity of
the result, monitor, and improve performance by identifying
potential problems, and prove consistency of performance over
time. The laboratory’s performance can be compared to the
performance of other laboratories and used to adjust the qual-
ity of the outcome. Figure 2 shows the case of an exemplary
EATRIS facility with sequential participation in PT programs.
The laboratory in Fig. 2a was able to improve the overall qual-
ity of its performance from 2020 to 2022, just as the reference
laboratories did. The laboratory results in Fig. 2b show an
improvement of the performance from 2020 to 2022, obtain-
ing the quality to the level of the reference laboratories. It has
become clear that participation in PT programs can play an
important role in gaining information on the sample processing
quality. In case specific problems are pinpointed in any of the
determined parameters, the participating laboratory can take
corrective measures, and this can lead to significant improve-
ment in the quality of the sample processing. Participation in
PT schemes represents a critical step also for omics analyses
to ensure accurate, reliable, and trustworthy data.
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Fig.2 External quality assessment. History of z-Scores of one of the
four EATRIS-Plus omics sites participating in the “RNA Extraction
from Whole Blood” scheme (a), and “RNA Extraction from FFPE
Tissue”-scheme of the IBBL PT program from 2020 until 2022 (b).
In the long run, a large proportion of results giving rise to |z[>2
(more than 5%) and IzI>3 (more than 0.3%) indicates either a biased
mean, or a standard deviation of the participant which is higher than
the Proficiency Testing Standard Deviation. The participating site
used a magnetic bead-based RNA isolation method, whereas the
comparative score “All results” is an average z-Scores from all par-
ticipants using magnetic bead-based, silica membrane-based or other
RNA isolation methods. FFPE, formalin-fixed paraffin-embedded

Multi-omics Reference Materials for Quality
Assessment: Commercial and Research Materials

The options for analysis of biological samples with omics
platforms are numerous, and there is no undisputed or
unchallenged “perfect” way. Largely depending on the
research or clinical question and the available material,
extraction methods may vary, and many technical and sta-
tistical approaches may be employed, sometimes leading to
tremendous discrepancies in the results (Shi et al. 2010).
All facilities of the EATRIS-Plus project utilize high-
quality reference material in the daily work routine for their
respective omics analysis platforms to monitor changes
of quality over time and from experiment to experiment
(Table 1). Gradual deterioration or improvement of the data
quality from the reference material as well as batch effects
and other “unwanted noise” indicates that corrective meas-
ures are needed. In addition to these intra-lab QA, inter-
laboratory QA can also be conducted. However, unless all
labs use the exact same methodology (an ideal condition for
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direct lab-to-lab comparison), the comparative analysis usu-
ally relies on the identification of consensus features (e.g.,
concentration of analytes in a biofluid, detection of small
variants in a DNA or specific transcripts in an RNA).

In the case of multi-omics datasets management, batch
detection and correction methods, and best practices for
mitigation of unwanted noise are currently being developed
(Goh et al. 2017; Ugidos et al. 2020).

While single omics reference materials are available and
widely used as “ground truth” for the evaluation of the per-
formance of the technologies and technology benchmarking
(e.g. genomic DNA (Zook et al. 2019, 2020), tumor-normal
paired DNA (Deveson et al. 2021; Fang et al. 2021; Jones
et al. 2021), RNA (SEQC MAQC III Consortium 2014), pro-
tein (Friedman et al. 2011; Ivanov et al. 2013), and metab-
olite reference material (Ulmer et al. 2017)), multi-omics
demands matched reference resources spanning DNA, RNA,
proteins and metabolites. EATRIS-Plus members have used
both commercial and research reference materials during
the project.

Commercial Omics Reference Material

To evaluate the process from acquisition of pre-extracted
reference multi-omics material (RNA, DNA, metabolites,
and proteins) to data generation, the EATRIS-Plus project
employs both commercially available reference materials
and research reference materials, namely the samples of
the Fudan Quartet project (Table 1). Commercial quality
references are regularly used by EATRIS-Plus sites, usu-
ally for longitudinal quality assessment. These reagents
are processed according to the procedures used at each site
and allow for a comparison of data quality between labo-
ratories. However, for certain omics technologies com-
mercial reference materials are available to check only
specific technical steps but not the whole process (from
sample preparation to data analysis). For example, no ref-
erence materials specifically designed for differential pro-
tein expression analysis are commercially available, and
usually in-house generated standards obtained by mixing
at defined ratios commercially available individual tryptic
digests are used as a proxy.

Research Omics Reference Material: The Fudan
Quartet Project

In a PT effort aimed to assess the quality of the omics
technology platforms of EATRIS-Plus partners, the EAT-
RIS-Plus project acquired Quartet multi-omics reference
materials from Fudan University (Shanghai, China). The
Quartet reference materials encompass DNA, RNA, pro-
tein, and metabolites, all derived from B-lymphoblastoid
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cell lines obtained from a familial quartet consisting of
parents and monozygotic twin daughters (https://chinese-
quartet.org) (Yang et al. 2023; Yu et al. 2023a, 2023b;
Zheng et al. 2023). The Quartet Project is a pivotal
resource, providing “multi-omics ground truth”, best prac-
tices, and computational methods for objective assessment
of proficiency and reliability of data generation processes
in participating laboratories (Fig. 3).

Quartet reference materials were dispatched to an EAT-
RIS-Plus coordinator site of this activity, aliquoted and then
distributed to the various EATRIS laboratories for process-
ing and analysis. Raw data resulting from these analyses
were uploaded onto the Quartet Data Portal (https://chine
se-quartet.org), where automated data analysis and report-
ing were conducted using publicly available workflows. For
whole genome sequencing for example, the quality assess-
ment starts from FASTQ files and can be divided into pre-
alignment quality assessment, post-alignment assessment,
and small variants calling results assessment. The quality
of pre-alignment is assessed by FastQC and FastQ Screen,
while post-alignment is assessed by Qualimap (http://quali
map.conesalab.org). The performance of variants calling
results are evaluated by comparison to historic Fudan refer-
ence datasets, which had been provided by multiple labora-
tories, and Quartet family-dependent built-in genetic truth.
MultiQC is used for compiling quality control (QC) results
(for more details on the analysis pipelines, including the
codes, please see https://docs.chinese-quartet.org/data_pipel
ines/intro/). EATRIS-Plus laboratories provided data for pro-
teomics, metabolomics, DNA-seq and RNA-seq (Fig. 4).
Three EATRIS sites also performed microRNA-seq, which
was manually analyzed by the Fudan Quartet team, as this
workflow was not implemented in the Quartet Data Portal at
the time this study was performed (data no shown). Finally,
one EATRIS-Plus site performed and evaluated microRNA
gRT-PCR for 170 microRNAs (data not shown).

Proficiency Testing of EATRIS-Plus Facilities

The Quartet design provides both reference dataset-depend-
ent and -independent QC metrics for quality assessment of
multi-omics profiling (Fig. 4). For qualitative omics, the
F1-score is a commonly used measure that considers both
false positives and false negatives by computing a harmonic
mean of precision and recall. Quality metrics for assessing
reliability of DNA-seq, RNA-seq, proteomics, and metabo-
lomics in terms of intra-batch proficiency and cross-batch
reproducibility are assessed using ratio-based reference data-
sets (Zheng et al. 2023). The Pearson correlation coefficient
between the ratio-based expression levels of test datasets and
reference datasets are used to describe the accuracy of quan-
titation. Signal-to-Noise Ratio (SNR) is used to investigate
the differences between “cases’ and controls. Overall, the
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Fig.3 The Chinese Quartet reference materials and the quality
assessment system. a Data generation by using Quartet reference
materials across multiple platforms, sites, and protocols. b visual
representation of several quality assessment parameters. The quality
assessment system is embedded on the Quartet Data Portal (https://
chinese-quartet.org/#/dashboard). A total quality score is calcu-

platform allows the evaluation of the quality of data coming
from different participants, platforms, protocols, and ana-
lytical tools.

One potential use of the Fudan Quartet reference sam-
ples is demonstrated here for liquid chromatography-mass
spectroscopy (LC-MS) proteomics analysis. Laboratory L2
evaluated six different LC-MS proteomics protocols, being
different in liquid chromatography column (performance
(L2-2/4/6) versus endurance (L.2-1/3/5)), MS mode (DDA
(L2-1/2/5/6) versus DIA (L2-3/4)) and corresponding data
analysis methods (for DIA: PaSER DIA-NN (L2-3/4), for
DDA: MSFragger (L2-5/6) versus PaSER ProLuCID (L2-
1/2) (Demicheyv et al. 2020; Meier et al. 2020; Meier et al.
2018; Xu et al. 2015; Yu et al. 2020). The quality of the pro-
teomics output of these six protocols was assessed using the
Fudan quality scoring yielding informative ranking that was
subsequently used by the laboratory in their fit-for-purpose
selection of workflows.

The EATRIS-Plus Multi-omics Dataset

Implementation of FAIR principles (Wilkinson et al.
2016) at the individual omics level is essential to derive
reproducible results from multi-omics data analyses. Most
importantly, samples and data should be described by rich
metadata. Since acquired data and subsequent multi-omics
analysis can be affected by technical factors related to sam-
pling, processing, sample storage conditions (tempera-
ture, duration, thawing/freezing cycles), and measurement

@ Springer

lated from several individual aspects of quality, for qualitative omics
including Mendelian concordance rate and F1 score and for quantita-
tive omics including signal-to-noise ratio (SNR) and relative corre-
lation with reference dataset (RC) (Zheng et al. 2023). QC Quality
control; PC principal component

conditions (protocols, measurement order, possible measure-
ment batches), documentation of these factors can be key to
reproducibility of research results. Additionally, intra- and
inter-batch QC samples can help identify and adjust for
batch effects (Cuklina et al. 2021). Finally, practices imple-
menting FAIR Principles for Research Software can increase
reproducibility of integrative multi-omics analyses (Barker
et al. 2022; Chue Hong et al. 2022; de Visser et al. 2023).

The available analysis methods for multi-omics integra-
tion can be limited by type and completeness of data. While
some integrative multi-omics methods can handle missing
observations in some data modalities (Argelaguet et al.
2020; Cuklina et al. 2021), many methods require complete
observations (Flores et al. 2023). Obtaining complete data
for vertical integration is more challenging than in single
omics experiments. Although methods that allow imputation
of a low number of missing values are available, the choice
of imputation method should be guided by the mechanism
that causes missing values, e.g. missing at random vs. not
at random (Wei et al. 2018). In the presence of numerous
missing values, imputation is not advised.

Multi-omics studies have a large potential for the uncov-
ering of biomarker profiles that are relevant for disease diag-
nosis, prognosis, or prediction of the efficacy of medical
interventions (e.g. Demir Karaman and Isik 2023; Li and
Zhou 2022; Wang et al. 2023; Xiao et al. 2022). They also
contribute to study the impact of lifestyle on wellbeing on
the molecular levels (Marabita et al. 2022), and the strati-
fication of patients in clinical trials (Bourgonje et al. 2023;
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Fig.4 Quality assessment of
multi-omics, multi-site, and
multi-protocol datasets in profi-
ciency testing. Chinese Quartet
reference material was subjected
to omics analysis in differ-

ent EATRIS-Plus facilities. a
The total quality scores of all
datasets with ranking labels
among all historical datasets in
genomics, transcriptomics, pro- 1
teomics and metabolomics. The
label “Bad”, “Fair”, “Good” or
“Great” manifests as the dataset
ranking below the lower 20%,
the 50%, the upper 20%, or
above the upper 20% quantiles
of the historical datasets. b—e
Scatter plots of quality assess-
ment results in genomics (b),
transcriptomics (c¢), proteomics
(d) and metabolomics (e) data;
each datapoint shows the values
of specific QC metrics across
the samples in each dataset.
F1-Score is the harmonic mean
of precision and recall for
variant calling. Signal-to-noise
ratio (SNR) is defined as the
ratio of the power of a signal

to the power of noise. RC, the
relative correlation with refer-
ence datasets, was calculated
based on the Pearson correlation
coefficient between the relative
expression levels of a dataset for
a given pair of groups and the
corresponding reference fold-
change values. CV Coefficient
of variation. All historical a o
datasets are colored gray to be
distinguished from the tested e
datasets. All scatter plots were

added with frequency distribu-
tion bars. Table S1 provides
information on key aspects

of the workflows. Table S2
provides the coordinates of the
data points
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Zielinski et al. 2021). However, these biomarker profiles are
subject to many different sources of technical and inter- and
intraindividual variation. Capturing biological variability
in healthy individuals and reducing the unwanted technical
variation can help to plan and interpret future translational
studies (Gallego-Pauls et al. 2021; Olshansky et al. 2022).
To address these issues, EATRIS-Plus project executed a
multi—omics study in a human population cohort of 127 indi-
viduals from the Czech Republic (ClinicalTrials.gov, Identi-
fier: NCT04427163). These samples have been selected from
a larger cohort of blood donor’s bio-banked at the Institute
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of Molecular and Translational Medicine (Palacky Univer-
sity Olomouc) to ensure sex balance and a representative
distribution within the age range of 21 to 61 years. Blood
samples were profiled with twelve different-omics tech-
nologies, genomics (whole genome sequencing (WGS) and
array Comparative Genomic Hybridization (arrayCGH)),
transcriptomics (mRNA and miRNA sequencing), and epi-
genomics (DNA methylation sequencing using EM-seq) on
blood cells, and shotgun proteomics, targeted metabolomics
(amino acids, very long chain fatty acids and acylcarnitines),
untargeted lipidomics (positive and negative ion mode), and
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gPCR-based miRNA profiling on heparin and EDTA plasma,
making this study one of the most comprehensive multi-
omics studies executed until today. In this reference study,
we applied various methods to uncover sources of techni-
cal and biological variation. To enable metadata harmoni-
zation and potential data integration with external studies,
the Observational Medical Outcomes Data Model, OMOP,
(https://www.ohdsi.org/data-standardization), was applied.
This study serves to help design future multi-omics stud-
ies in human cohorts and help researchers choose the most
appropriate omics layers, account for biological and techni-
cal confounders, calculate sample sizes, and creating robust
experimental and computational workflows. The data from
this study are currently prepared for publication and dissemi-
nation via local installation of cBioPortal to the community
(https://cbioportal.imtm.cz). In addition, all standard operat-
ing procedures and data access information are provided in
the Multi-omics Toolbox (MOTBX), which is described in
the following section below.

The EATRIS Multi-omics Toolbox (MOTBX)

The multi-omics research community still faces a number
of challenges impacting the biomarker development and
implementation in clinical practice that need to be over-
come: (a) poor levels of technological, analytical and data
processing harmonization resulting in poor reproducibility,
(b) poor data stewardship and compliance to the FAIR prin-
ciples (Wilkinson et al. 2016), (c) lack of understanding of
the relationship between biomarkers belonging to different
biological layers (transcriptomic, proteomic, metabolomic,
epigenomic), (d) lack of reliable control reference values for
these biomarkers, and (e) poor understanding of the actual
clinical needs, resulting in limited clinical adoption (Taube
et al. 2009).

In addition, information on omics reference material and
multi-omics data integrative analysis and interpretation is
fragmented in the knowledge space (Conesa and Beck 2019),
and publicly available multi-omics profiling data are scarce.

Tackling these issues in a systematic way was one of the
main objectives of the EATRIS-Plus project. This resulted in
the development of the web based MOTBX (https://motbx.
eatris.eu, https://zenodo.org/records/10141670).

The MOTBX is an open platform that is aimed to pro-
vide researchers, health professionals and other users with
relevant information on resources related to multiple -omics
technologies (genomics, epigenomics, transcriptomics, prot-
eomics, and metabolomics), quality control and assessment,
as well as data stewardship and integration. The toolbox
core is structured into three sections: Omics Technolo-
gies, Quality Assessment, and Data, including analysis and
FAlRification pipelines and tools (Fig. 5). It offers access
to a collection of best practices and protocols for individual

@ Springer

—omics technologies, resources to help implement quality
control and quality assessment processes, tools and services
to adopt FAIR data practices for multi-omics data manage-
ment and analysis, education and training resources in multi-
omics field, and inks to other EATRIS Toolkits, e.g., Patient
Engagement Resource Centre (PERC), Innovation Manage-
ment Toolbox (EJPRD IMT). The MOTBX is a resource that
has been built with, and for the community. This means that
researchers are not only welcome to use the MOTBX, but
to support its further development by actively contributing
with valuable resources. By providing such a toolbox to the
research community, EATRIS aims to enable and support
high-quality multi-omics research and accelerate the imple-
mentation of PM solutions.

Discussion

Detection of sensitive, specific, and robust biomarkers is
one of the main pillars of personalized medicine. The detec-
tion of biomarkers through omics technologies can greatly
impact decision-making in healthcare, contributing to the
early detection of disease onset, allowing for timely inter-
vention and treatment, can help tailor treatments to indi-
vidual patients based on their genetics, disease subtype, or
response to therapy, leading to more effective, targeted and
less toxic treatments (Ahmed 2022; Olivier et al. 2019).
Omics biomarkers can help predict a patient's likelihood of
developing certain diseases, distinguish similar pathologi-
cal entities (differential diagnosis), provide prognostic infor-
mation about a patient’s likelihood to progress, or serve as
prognostic markers of a patient’s response to specific treat-
ments, enabling proactive healthcare management strategies
(Ahmad et al. 2023). In addition, in drug development and
clinical trials, biomarkers based on omics can be used to
identify suitable candidates for clinical trials, patient strati-
fication, monitoring treatment response, and estimating drug
efficacy (Subbiah 2023).

Overall, integration of biomarker detection with omics
technologies empowers clinicians to deliver more informed
decisions, leading to improved patient outcomes and a shift
towards precision medicine (Johnson et al. 2021; Wang and
Wang 2023). In this context, the procedures for sample har-
vesting and processing, data integration with phenotypic
traits, analysis, and interpretation of results play a key role
in the final decision on action. Depending on the outcome,
this linear path may become circular or branch, when it is
decided that further samples are needed, and other inves-
tigations are required to get a deeper understanding of the
subject matter. The process requires quality assessment
and quality control measures at every step: technology
platforms should be validated, data collection and manage-
ment transparent, data format and entries harmonized and
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EATRIS-Plus and external resources to enable high-quality research in personalised medicine

Multi-omics Toolbox (MOTBX)

https://motbx.eatris.eu/ eatrls

A knowledge hub for clinicians and translational

researchers from academia and industry

Data management
& analysis

-Omics technologies

* Tools and services to adopt FAIR
practices for multi-omics data
management and analysis.

« A collection of best practices and
validated protocols for individual
—omics technologies.

* Resources to help implement
quality control and quality
nent proc

BUILT WITH THE COMMUNITY, FOR THE COMMUNITY

Fig.5 The multi-omics toolbox (MOTBX). The MOTBX (https://
motbx.eatris.eu) is an open access knowledge hub for translational
researchers supporting development, implementation and adoption of
multi-omics approaches for personalized medicine, including quality
assessment aspects. The MOTBX has been developed by EATRIS-

electronically accessible, and the entire process including
the analysis process and decision making should be thor-
oughly documented (Ali et al. 2023). European Biomedical
Research Infrastructures have been developed since the early
second decade of the 2000s to play a leading role in develop-
ing, applying, and disseminating quality assurance guide-
lines in different areas along the translational trajectory.
For instance, the European biobanking research infrastruc-
ture (BBMRI, www.bbmri-eric.eu) is addressing quality in
human biological samples and sample storage; EuroBioim-
aging (www.eurobioimaging.eu) is providing image analy-
sis solutions and imaging quality assessment guidelines;
ELIXIR (www.elixir-europe.org) has been founded with
the goal to develop and provide guidance for management
and quality of life science data. While these and other infra-
structures exhibit a focus on specific technological expertise
areas in translational research, EATRIS provides an integra-
tive platform to prevent siloing. At the cost of overlapping
with individual, focused services of other infrastructures,
EATRIS ensures services and quality provision along the
entire translational trajectory (Fig. 1).

In this work we share some of the initiatives EATRIS
sites have participated in within the EATRIS-Plus project.
Our efforts support the notion that proficiency testing of
sample processing technologies and laboratory performance
can and should be done at different steps of the translational
process, as quality increases the chance of developing
meaningful molecular tools. Longitudinal proficiency test-
ing can lead to an improvement of laboratory performance,
as it provides continuous feedback to the researcher on the

Plus partners across Europe to support the translational biomedical
research communities, as the result of collaborative work on data
stewardship, the generation of a multi-omics dataset of healthy indi-
viduals, quality assessment studies, and the help and input of stake-
holders from industry and academia

quality of the sample processing. Application of commer-
cial or research reference material serves multiple purposes,
from assessing the quality of the data generation process
at a given time point, the development of the quality over
time, and the possibility to merge batches of data into larger
datasets by applying statistical measures.

To demonstrate the applicability of the quality assess-
ment strategies in the field of multi-omics applications
mentioned above, EATRIS-Plus generated a multi-omics
dataset, consisting of twelve-omics platforms, i.e. genom-
ics (whole genome sequencing (WGS) and array Compara-
tive Genomic hybridization (arrayCGH)), transcriptomics
(mRNA and miRNA sequencing), epigenomics (DNA meth-
ylation sequencing using EM-seq) on blood cells, shotgun
proteomics, targeted metabolomics (amino acids, very long
chain fatty acids and acylcarnitines), untargeted lipidomics
(positive and negative ion mode), qPCR-based miRNA pro-
filing on heparin and EDTA plasma from about 100 healthy
individuals (Czech cohort). We applied quality control and
data integration strategies to create a holistic molecular rep-
resentation of the individuals in the study. Together with ref-
erences to literature on quality aspects of multi-omics data,
links to analysis platforms and reference material, among
others, these multi-omics data are available via MOTBX
(https://motbx.eatris.eu), an open access multi-omics data
platform that was created within the EATRIS-Plus project.
The small sample size used in this “demonstrator” does not
allow us to define the obtained results as reference values
for each omics in a healthy population. The EATRIS-Plus
community aims to make the multi-omics dataset available
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for further growth by data integration with other datasets,
thereby increasing its value for biomedical research and
biomarker discovery. The MOTBX, as a key public tool
delivered by the EATRIS-Plus community, is a live resource
open to the entire research community that will be updated
and implemented with new relevant content generated by
qualified EATRIS partners, beyond the EATRIS-Plus project
lifetime.

Our efforts demonstrate that quality assessment is ben-
eficial and feasible at every step of the translational trajec-
tory. Testing and discussing the experiment design and plan
against expert opinions, as provided, e.g., by the EATRIS
Health Technology Assessment (HTA) services, can help
focus on the study goal and outcome; longitudinal profi-
ciency testing serves to assess a decline or improvement
in sample processing quality; unwanted technical variation
can be assessed and possibly alleviated via the processing of
reference material, e.g. in studies where multiple batches of
samples have to be processed. Comparative quality assess-
ment can help harmonize and improve procedures and analy-
sis approaches. We trust that our findings will be beneficial
for researchers in the field, as well contribute to discus-
sions within and across organizations that aim to improve
healthcare and lifestyle through large scale studies (e.g., the
Netherlands x-omics consortium (www.x-omics.nl) or the
Healthy Brain Initiative (www.healthybrainstudy.nl).

Since multi-omics approaches seek to discover inter-
connected signatures for sample classification and network
identification between cross-omics features, QC metrics
should be suitable for evaluating the performance of each
omics type in terms of data generation and integration, and
should be related to these two research objectives: (a) the
integration of multi-omics information for more robust
sample classifiers and, (b) the identification of multilayered
interconnected molecular signatures are the major goals for
multi-omics profiling. Therefore, accessible multi-omics
quality reference materials paired with fit-for-purpose per-
formance metrics are urgently needed (Beger et al. 2019;
Salit and Woodcock 2021; Sene et al. 2017; Wang et al.
2014). The use of multi-omics material in research is one of
the measures that can be taken, but the definition of appro-
priate reference materials for omics implementation in clini-
cal practice is one of the most critical aspects for omics
adoption in health care systems for personalized medicine.

Conclusion

Translational biomedical academic and clinical research
requires step-by-step quality assessment and assurance
measures in order to warrant successful clinical imple-
mentation of the findings. The European Infrastructure for
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Translational Medicine, EATRIS, provides resources, tech-
nologies, and expertise to assist along the translational tra-
jectory (www.EATRIS.eu). With the Multi-omics Toolbox
(https://MOTBX.EATRIS.eu), which is a community-driven
“live resource” that will be fed and improved by new proto-
cols, workflow and other resources, the EATRIS-Plus project
has delivered open-source tools for multi-omics data quality
assessment.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s43657-024-00170-0.
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