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Abstract
Molecular characterization of a biological sample, e.g., with omics approaches, is fundamental for the development and 
implementation of personalized and precision medicine approaches. In this context, quality assessment is one of the most 
critical aspects. Accurate performance and interpretation of omics techniques is based on consensus, harmonization, and 
standardization of protocols, procedures, data analysis and reference values and materials. EATRIS, the European Infra-
structure for Translational Medicine (www.​EATRIS.​eu), brings together resources and services to support researchers in 
developing their biomedical discoveries into novel translational tools and interventions for better health outcomes. Here we 
describe the efforts within the Horizon 2020 EATRIS-Plus project and activities of member facilities of EATRIS towards 
quality assessment of pre-clinical sample processing, clinical omics data generation, multi-omics data integration, and dis-
semination of the resources in a Multi-Omics Toolbox, which is the principal deliverable of the EATRIS-Plus project for 
the consolidation of EATRIS towards translational medicine.

Keywords  Multi-omics · Quality · Reference samples · European infrastructure for translational medicine · Multi-omics 
toolbox

Abbreviations
BBMRI	� European biobanking research 

infrastructure
CV	� Coefficient of variation
DNA	� Deoxyribonucleic acid
EATRIS	� European infrastructure for translational 

medicine
EJPRD IMT	� European joint programme rare diseases 

innovation management toolbox
EQA	� External quality assessment
FAIR	� Findable, accessible, interoperable, and 

reusable
FFPE	� Formalin-fixed paraffin-embedded
HTA	� Health technology assessment
IBBL	� Integrated BioBank of Luxembourg

LC–MS	� Liquid chromatography-mass spectroscopy
MOTBX	� Multi-omics toolbox
OMOP	� Observational medical outcomes data 

model
PC	� Principal component
PT	� Proficiency testing
QA	� Quality assessment
qRT-PCR	� Quantitative reverse transcription polymer-

ase chain reaction
RC	� Relative correlation
RNA	� Ribonucleic acid
SNR	� Signal-to-noise ratio
SOP	� Standard operating procedure

Introduction

Precision medicine relies on sensitive and specific detection 
of biological variables that may support diagnosis, prog-
nosis, and prediction of therapy response. In this context, 
omics technologies, which provide qualitative and quantita-
tive information on thousands of molecular entities such as 
nucleic acids, proteins, and metabolites in a given biological 
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sample, have proven invaluable tools. Moreover, two or more 
omics technologies may be integrated into multi-omics 
approaches, thus increasing the possibility of detection of 
molecular signatures, and providing a more comprehensive 
view of the molecular portrait and biomarkers of phenotype 
and the health status of an individual. Clearly, the accuracy 
of such a type of molecular diagnosis demands a high qual-
ity of data. This is becoming increasingly crucial, given the 
widespread use of omics approaches in routine diagnostics 
and the progressive expansion in the clinical applications. In 
addition to making data findable, accessible, interoperable, 
and reusable (FAIR-principles, https://​www.​go-​fair.​org/​
fair-​princ​iples) (van der Velde et al. 2022; Wilkinson et al. 
2016), assuring a minimal level of data quality is essential 
for further use towards the benefit of individuals in health-
care and clinical care.

Integrated multi-omics data analysis and interpreta-
tion require careful design of experiments and associated 
data analysis procedures to enable optimal use of research 
resources. Importantly, quality needs to be assessed and 
maintained throughout the whole process of generation and 
analysis of multi-omics approaches. In this regard, several 
initiatives have been undertaken to promote best practices, 
ranging from a proper definition of the experimental ques-
tion and study design, sample handling, data analysis and 
stewardship, and re-use of approaches and data. The excep-
tional structure of European Infrastructure for Translational 
Medicine (EATRIS), which spans access to technologies, 
expertise, and services in most areas of biomedical research 
and thus overarches the process of personalized medicine, 
provides an integrative platform to prevent siloing, thereby 
ensuring services and quality assurance along the entire 
translational trajectory from conception and evaluation of 
a study to the data re-use (Fig. 1).

The EATRIS-Plus project was launched to deliver innova-
tive scientific tools to support the long-term sustainability 

strategy of EATRIS as one of Europe’s key research infra-
structures for Personalized Medicine. As part of the EAT-
RIS-Plus project, a multi-omics dataset from about 100 
healthy individuals was generated and compiled. The data 
of this pilot project are being made available for further 
analyses by stakeholders involved in biomedical research, 
healthcare, and drug development. The multi-omics study 
was based on samples collected from volunteers within the 
Czech Genome Project (https://​czech​genome.​iabio.​eu/). 
Here we outline and discuss the efforts that the EATRIS-
Plus initiative took to address comparative quality assess-
ment (QA) of omics data generation and analysis. Proce-
dures and results of this initiative have been compiled in the 
Multi-Omics Toolbox (MOTBX) (https://​motbx.​eatris.​eu), 
(see below).

Proficiency Testing for Assessing Pre‑Analytical 
Sample Processing Methods

Proficiency Testing (PT) programs are external quality 
assessment (EQA) tools that aim to evaluate the perfor-
mance of laboratories in conducting specific measurements 
or tests, ensuring ongoing quality monitoring, and promot-
ing the standardization of procedures to achieve greater con-
sistency and reproducibility in results (Miller et al. 2011).

Participation in PT programs enables laboratories to 
gauge the strengths and weaknesses of their procedures 
by comparing performance and reproducibility of their 
results with those of their peers and allowing to validate 
and enhance performance, identify potential issues in test-
ing and processing or technical problems with equipment or 
reagents, compare and harmonize methods and procedures, 
assess precision and accuracy, evaluate operator capabili-
ties, provide staff education, and instill confidence in labo-
ratory staff and users (Analytical Method Committee 2010; 
Brookman et al. 2011). PT programs can also offer valuable 

Fig. 1   The translational bio-
medical process and involve-
ment of selected biomedical 
Research Infrastructures (RIs) 
as stakeholders in quality 
assessment. EATRIS is involved 
in quality assessment check-
points along the translational 
trajectory, while other RIs tend 
to focus on specific aspects or 
technologies. ECRIN, https://​
ecrin.​org; BBMRI-ERIC, 
https://​bbmri-​eric.​eu; Elixir, 
https://​elixir-​europe.​org

https://www.go-fair.org/fair-principles
https://www.go-fair.org/fair-principles
https://czechgenome.iabio.eu/
https://motbx.eatris.eu
https://ecrin.org
https://ecrin.org
https://bbmri-eric.eu
https://elixir-europe.org
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insights into method-trueness, particularly in cases where 
reference materials are not available, thus supporting ana-
lytical method validation (Analytical Method Committee 
2010).

PT programs play a crucial role in the quality manage-
ment system of laboratories by ensuring consistent deliv-
ery of high-quality data and monitoring data reliability. 
Laboratories in which the results deviate significantly for 
the expected values (high z-scores) necessitate prompt cor-
rective actions to be taken. To achieve this, implementing a 
comprehensive set of measures is essential. These measures 
encompass the utilization of standard operating procedures 
(SOPs) and validated protocols, incorporating internal qual-
ity controls such as reference materials and control charts, 
active participation in PT programs, and obtaining certifica-
tion or accreditation according to recognized standards such 
as ISO15189/IEC, ISO/IEC 17025 and ISO 9001 (Meggen-
dorfer et al. 2022). Indeed, it has been demonstrated that 
laboratories engaged in PT programs exhibit robust internal 
quality control procedures and consistently achieve better 
z-scores (Taverniers et al. 2004; Verderio et al. 2022).

In the context of EATRIS-Plus, a PT program for bio-
specimen processing has been established by the Integrated 
BioBank of Luxembourg (IBBL, https://​www.​lih.​lu/​en/​trans​
latio​nal-​medic​ine/​trans​latio​nal-​medic​ine-​opera​tions-​hub/​integ​
rated-​bioba​nk-​of-​luxem​bourg-​ibbl/; https://​biosp​ecime​npt.​
ibbl.​lu/) to ensure the fitness-for-purpose of samples for the 
down-stream omics analysis. From 2020 to 2022, two EAT-
RIS-Plus partners involved in omics analyses were enrolled in 
26 processing schemes. The aim was to compare the efficiency 
of the sample processing methods to ensure the validity of 
the result, monitor, and improve performance by identifying 
potential problems, and prove consistency of performance over 
time. The laboratory´s performance can be compared to the 
performance of other laboratories and used to adjust the qual-
ity of the outcome. Figure 2 shows the case of an exemplary 
EATRIS facility with sequential participation in PT programs. 
The laboratory in Fig. 2a was able to improve the overall qual-
ity of its performance from 2020 to 2022, just as the reference 
laboratories did. The laboratory results in Fig. 2b show an 
improvement of the performance from 2020 to 2022, obtain-
ing the quality to the level of the reference laboratories. It has 
become clear that participation in PT programs can play an 
important role in gaining information on the sample processing 
quality. In case specific problems are pinpointed in any of the 
determined parameters, the participating laboratory can take 
corrective measures, and this can lead to significant improve-
ment in the quality of the sample processing. Participation in 
PT schemes represents a critical step also for omics analyses 
to ensure accurate, reliable, and trustworthy data.

Multi‑omics Reference Materials for Quality 
Assessment: Commercial and Research Materials

The options for analysis of biological samples with omics 
platforms are numerous, and there is no undisputed or 
unchallenged “perfect” way. Largely depending on the 
research or clinical question and the available material, 
extraction methods may vary, and many technical and sta-
tistical approaches may be employed, sometimes leading to 
tremendous discrepancies in the results (Shi et al. 2010).

All facilities of the EATRIS-Plus project utilize high-
quality reference material in the daily work routine for their 
respective omics analysis platforms to monitor changes 
of quality over time and from experiment to experiment 
(Table 1). Gradual deterioration or improvement of the data 
quality from the reference material as well as batch effects 
and other “unwanted noise” indicates that corrective meas-
ures are needed. In addition to these intra-lab QA, inter-
laboratory QA can also be conducted. However, unless all 
labs use the exact same methodology (an ideal condition for 

Fig. 2   External quality assessment. History of z-Scores of one of the 
four EATRIS-Plus omics sites participating in the “RNA Extraction 
from Whole Blood” scheme (a), and “RNA Extraction from FFPE 
Tissue”-scheme of the IBBL PT program from 2020 until 2022 (b). 
In the long run, a large proportion of results giving rise to |z|> 2 
(more than 5%) and |z|> 3 (more than 0.3%) indicates either a biased 
mean, or a standard deviation of the participant which is higher than 
the Proficiency Testing Standard Deviation. The participating site 
used a magnetic bead-based RNA isolation method, whereas the 
comparative score “All results” is an average z-Scores from all par-
ticipants using magnetic bead-based, silica membrane-based or other 
RNA isolation methods. FFPE, formalin-fixed paraffin-embedded

https://www.lih.lu/en/translational-medicine/translational-medicine-operations-hub/integrated-biobank-of-luxembourg-ibbl/
https://www.lih.lu/en/translational-medicine/translational-medicine-operations-hub/integrated-biobank-of-luxembourg-ibbl/
https://www.lih.lu/en/translational-medicine/translational-medicine-operations-hub/integrated-biobank-of-luxembourg-ibbl/
https://biospecimenpt.ibbl.lu/
https://biospecimenpt.ibbl.lu/
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direct lab-to-lab comparison), the comparative analysis usu-
ally relies on the identification of consensus features (e.g., 
concentration of analytes in a biofluid, detection of small 
variants in a DNA or specific transcripts in an RNA).

In the case of multi-omics datasets management, batch 
detection and correction methods, and best practices for 
mitigation of unwanted noise are currently being developed 
(Goh et al. 2017; Ugidos et al. 2020).

While single omics reference materials are available and 
widely used as “ground truth” for the evaluation of the per-
formance of the technologies and technology benchmarking 
(e.g. genomic DNA (Zook et al. 2019, 2020), tumor-normal 
paired DNA (Deveson et al. 2021; Fang et al. 2021; Jones 
et al. 2021), RNA (SEQC MAQC III Consortium 2014), pro-
tein (Friedman et al. 2011; Ivanov et al. 2013), and metab-
olite reference material (Ulmer et al. 2017)), multi-omics 
demands matched reference resources spanning DNA, RNA, 
proteins and metabolites. EATRIS-Plus members have used 
both commercial and research reference materials during 
the project.

Commercial Omics Reference Material

To evaluate the process from acquisition of pre-extracted 
reference multi-omics material (RNA, DNA, metabolites, 
and proteins) to data generation, the EATRIS-Plus project 
employs both commercially available reference materials 
and research reference materials, namely the samples of 
the Fudan Quartet project (Table 1). Commercial quality 
references are regularly used by EATRIS-Plus sites, usu-
ally for longitudinal quality assessment. These reagents 
are processed according to the procedures used at each site 
and allow for a comparison of data quality between labo-
ratories. However, for certain omics technologies com-
mercial reference materials are available to check only 
specific technical steps but not the whole process (from 
sample preparation to data analysis). For example, no ref-
erence materials specifically designed for differential pro-
tein expression analysis are commercially available, and 
usually in-house generated standards obtained by mixing 
at defined ratios commercially available individual tryptic 
digests are used as a proxy.

Research Omics Reference Material: The Fudan 
Quartet Project

In a PT effort aimed to assess the quality of the omics 
technology platforms of EATRIS-Plus partners, the EAT-
RIS-Plus project acquired Quartet multi-omics reference 
materials from Fudan University (Shanghai, China). The 
Quartet reference materials encompass DNA, RNA, pro-
tein, and metabolites, all derived from B-lymphoblastoid 

cell lines obtained from a familial quartet consisting of 
parents and monozygotic twin daughters (https://​chine​se-​
quart​et.​org) (Yang et al. 2023; Yu et al. 2023a, 2023b; 
Zheng et  al. 2023). The Quartet Project is a pivotal 
resource, providing “multi-omics ground truth”, best prac-
tices, and computational methods for objective assessment 
of proficiency and reliability of data generation processes 
in participating laboratories (Fig. 3).

Quartet reference materials were dispatched to an EAT-
RIS-Plus coordinator site of this activity, aliquoted and then 
distributed to the various EATRIS laboratories for process-
ing and analysis. Raw data resulting from these analyses 
were uploaded onto the Quartet Data Portal (https://​chine​
se-​quart​et.​org), where automated data analysis and report-
ing were conducted using publicly available workflows. For 
whole genome sequencing for example, the quality assess-
ment starts from FASTQ files and can be divided into pre-
alignment quality assessment, post-alignment assessment, 
and small variants calling results assessment. The quality 
of pre-alignment is assessed by FastQC and FastQ Screen, 
while post-alignment is assessed by Qualimap (http://​quali​
map.​cones​alab.​org). The performance of variants calling 
results are evaluated by comparison to historic Fudan refer-
ence datasets, which had been provided by multiple labora-
tories, and Quartet family-dependent built-in genetic truth. 
MultiQC is used for compiling quality control (QC) results 
(for more details on the analysis pipelines, including the 
codes, please see https://​docs.​chine​se-​quart​et.​org/​data_​pipel​
ines/​intro/). EATRIS-Plus laboratories provided data for pro-
teomics, metabolomics, DNA-seq and RNA-seq (Fig. 4). 
Three EATRIS sites also performed microRNA-seq, which 
was manually analyzed by the Fudan Quartet team, as this 
workflow was not implemented in the Quartet Data Portal at 
the time this study was performed (data no shown). Finally, 
one EATRIS-Plus site performed and evaluated microRNA 
qRT-PCR for 170 microRNAs (data not shown).

Proficiency Testing of EATRIS‑Plus Facilities

The Quartet design provides both reference dataset-depend-
ent and -independent QC metrics for quality assessment of 
multi-omics profiling (Fig. 4). For qualitative omics, the 
F1-score is a commonly used measure that considers both 
false positives and false negatives by computing a harmonic 
mean of precision and recall. Quality metrics for assessing 
reliability of DNA-seq, RNA-seq, proteomics, and metabo-
lomics in terms of intra-batch proficiency and cross-batch 
reproducibility are assessed using ratio-based reference data-
sets (Zheng et al. 2023). The Pearson correlation coefficient 
between the ratio-based expression levels of test datasets and 
reference datasets are used to describe the accuracy of quan-
titation. Signal-to-Noise Ratio (SNR) is used to investigate 
the differences between “cases” and controls. Overall, the 

https://chinese-quartet.org
https://chinese-quartet.org
https://chinese-quartet.org
https://chinese-quartet.org
http://qualimap.conesalab.org
http://qualimap.conesalab.org
https://docs.chinese-quartet.org/data_pipelines/intro/
https://docs.chinese-quartet.org/data_pipelines/intro/
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platform allows the evaluation of the quality of data coming 
from different participants, platforms, protocols, and ana-
lytical tools.

One potential use of the Fudan Quartet reference sam-
ples is demonstrated here for liquid chromatography-mass 
spectroscopy (LC–MS) proteomics analysis. Laboratory L2 
evaluated six different LC–MS proteomics protocols, being 
different in liquid chromatography column (performance 
(L2-2/4/6) versus endurance (L2-1/3/5)), MS mode (DDA 
(L2-1/2/5/6) versus DIA (L2-3/4)) and corresponding data 
analysis methods (for DIA: PaSER DIA-NN (L2-3/4), for 
DDA: MSFragger (L2-5/6) versus PaSER ProLuCID (L2-
1/2) (Demichev et al. 2020; Meier et al. 2020; Meier et al. 
2018; Xu et al. 2015; Yu et al. 2020). The quality of the pro-
teomics output of these six protocols was assessed using the 
Fudan quality scoring yielding informative ranking that was 
subsequently used by the laboratory in their fit-for-purpose 
selection of workflows.

The EATRIS‑Plus Multi‑omics Dataset

Implementation of FAIR principles (Wilkinson et  al. 
2016) at the individual omics level is essential to derive 
reproducible results from multi-omics data analyses. Most 
importantly, samples and data should be described by rich 
metadata. Since acquired data and subsequent multi-omics 
analysis can be affected by technical factors related to sam-
pling, processing, sample storage conditions (tempera-
ture, duration, thawing/freezing cycles), and measurement 

conditions (protocols, measurement order, possible measure-
ment batches), documentation of these factors can be key to 
reproducibility of research results. Additionally, intra- and 
inter-batch QC samples can help identify and adjust for 
batch effects (Cuklina et al. 2021). Finally, practices imple-
menting FAIR Principles for Research Software can increase 
reproducibility of integrative multi-omics analyses (Barker 
et al. 2022; Chue Hong et al. 2022; de Visser et al. 2023).

The available analysis methods for multi-omics integra-
tion can be limited by type and completeness of data. While 
some integrative multi-omics methods can handle missing 
observations in some data modalities (Argelaguet et al. 
2020; Cuklina et al. 2021), many methods require complete 
observations (Flores et al. 2023). Obtaining complete data 
for vertical integration is more challenging than in single 
omics experiments. Although methods that allow imputation 
of a low number of missing values are available, the choice 
of imputation method should be guided by the mechanism 
that causes missing values, e.g. missing at random vs. not 
at random (Wei et al. 2018). In the presence of numerous 
missing values, imputation is not advised.

Multi-omics studies have a large potential for the uncov-
ering of biomarker profiles that are relevant for disease diag-
nosis, prognosis, or prediction of the efficacy of medical 
interventions (e.g. Demir Karaman and Isik 2023; Li and 
Zhou 2022; Wang et al. 2023; Xiao et al. 2022). They also 
contribute to study the impact of lifestyle on wellbeing on 
the molecular levels (Marabita et al. 2022), and the strati-
fication of patients in clinical trials (Bourgonje et al. 2023; 

Fig. 3   The Chinese Quartet reference materials and the quality 
assessment system. a Data generation by using Quartet reference 
materials across multiple platforms, sites, and protocols. b visual 
representation of several quality assessment parameters. The quality 
assessment system is embedded on the Quartet Data Portal (https://​
chine​se-​quart​et.​org/#/​dashb​oard). A total quality score is calcu-

lated from several individual aspects of quality, for qualitative omics 
including Mendelian concordance rate and F1 score and for quantita-
tive omics including signal-to-noise ratio (SNR) and relative corre-
lation with reference dataset (RC) (Zheng et  al. 2023). QC Quality 
control; PC principal component

https://chinese-quartet.org/#/dashboard
https://chinese-quartet.org/#/dashboard
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Zielinski et al. 2021). However, these biomarker profiles are 
subject to many different sources of technical and inter- and 
intraindividual variation. Capturing biological variability 
in healthy individuals and reducing the unwanted technical 
variation can help to plan and interpret future translational 
studies (Gallego-Pauls et al. 2021; Olshansky et al. 2022). 
To address these issues, EATRIS-Plus project executed a 
multi–omics study in a human population cohort of 127 indi-
viduals from the Czech Republic (ClinicalTrials.gov, Identi-
fier: NCT04427163). These samples have been selected from 
a larger cohort of blood donor’s bio-banked at the Institute 

of Molecular and Translational Medicine (Palacký Univer-
sity Olomouc) to ensure sex balance and a representative 
distribution within the age range of 21 to 61 years. Blood 
samples were profiled with twelve different-omics tech-
nologies, genomics (whole genome sequencing (WGS) and 
array Comparative Genomic Hybridization (arrayCGH)), 
transcriptomics (mRNA and miRNA sequencing), and epi-
genomics (DNA methylation sequencing using EM-seq) on 
blood cells, and shotgun proteomics, targeted metabolomics 
(amino acids, very long chain fatty acids and acylcarnitines), 
untargeted lipidomics (positive and negative ion mode), and 

Fig. 4   Quality assessment of 
multi-omics, multi-site, and 
multi-protocol datasets in profi-
ciency testing. Chinese Quartet 
reference material was subjected 
to omics analysis in differ-
ent EATRIS-Plus facilities. a 
The total quality scores of all 
datasets with ranking labels 
among all historical datasets in 
genomics, transcriptomics, pro-
teomics and metabolomics. The 
label “Bad”, “Fair”, “Good” or 
“Great” manifests as the dataset 
ranking below the lower 20%, 
the 50%, the upper 20%, or 
above the upper 20% quantiles 
of the historical datasets. b–e 
Scatter plots of quality assess-
ment results in genomics (b), 
transcriptomics (c), proteomics 
(d) and metabolomics (e) data; 
each datapoint shows the values 
of specific QC metrics across 
the samples in each dataset. 
F1-Score is the harmonic mean 
of precision and recall for 
variant calling. Signal-to-noise 
ratio (SNR) is defined as the 
ratio of the power of a signal 
to the power of noise. RC, the 
relative correlation with refer-
ence datasets, was calculated 
based on the Pearson correlation 
coefficient between the relative 
expression levels of a dataset for 
a given pair of groups and the 
corresponding reference fold-
change values. CV Coefficient 
of variation. All historical 
datasets are colored gray to be 
distinguished from the tested 
datasets. All scatter plots were 
added with frequency distribu-
tion bars. Table S1 provides 
information on key aspects 
of the workflows. Table S2 
provides the coordinates of the 
data points
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qPCR-based miRNA profiling on heparin and EDTA plasma, 
making this study one of the most comprehensive multi-
omics studies executed until today. In this reference study, 
we applied various methods to uncover sources of techni-
cal and biological variation. To enable metadata harmoni-
zation and potential data integration with external studies, 
the Observational Medical Outcomes Data Model, OMOP, 
(https://​www.​ohdsi.​org/​data-​stand​ardiz​ation), was applied. 
This study serves to help design future multi-omics stud-
ies in human cohorts and help researchers choose the most 
appropriate omics layers, account for biological and techni-
cal confounders, calculate sample sizes, and creating robust 
experimental and computational workflows. The data from 
this study are currently prepared for publication and dissemi-
nation via local installation of cBioPortal to the community 
(https://​cbiop​ortal.​imtm.​cz). In addition, all standard operat-
ing procedures and data access information are provided in 
the Multi-omics Toolbox (MOTBX), which is described in 
the following section below.

The EATRIS Multi‑omics Toolbox (MOTBX)

The multi-omics research community still faces a number 
of challenges impacting the biomarker development and 
implementation in clinical practice that need to be over-
come: (a) poor levels of technological, analytical and data 
processing harmonization resulting in poor reproducibility, 
(b) poor data stewardship and compliance to the FAIR prin-
ciples (Wilkinson et al. 2016), (c) lack of understanding of 
the relationship between biomarkers belonging to different 
biological layers (transcriptomic, proteomic, metabolomic, 
epigenomic), (d) lack of reliable control reference values for 
these biomarkers, and (e) poor understanding of the actual 
clinical needs, resulting in limited clinical adoption (Taube 
et al. 2009).

In addition, information on omics reference material and 
multi-omics data integrative analysis and interpretation is 
fragmented in the knowledge space (Conesa and Beck 2019), 
and publicly available multi-omics profiling data are scarce.

Tackling these issues in a systematic way was one of the 
main objectives of the EATRIS-Plus project. This resulted in 
the development of the web based MOTBX (https://​motbx.​
eatris.​eu, https://​zenodo.​org/​recor​ds/​10141​670).

The MOTBX is an open platform that is aimed to pro-
vide researchers, health professionals and other users with 
relevant information on resources related to multiple -omics 
technologies (genomics, epigenomics, transcriptomics, prot-
eomics, and metabolomics), quality control and assessment, 
as well as data stewardship and integration. The toolbox 
core is structured into three sections: Omics Technolo-
gies, Quality Assessment, and Data, including analysis and 
FAIRification pipelines and tools (Fig. 5). It offers access 
to a collection of best practices and protocols for individual 

–omics technologies, resources to help implement quality 
control and quality assessment processes, tools and services 
to adopt FAIR data practices for multi-omics data manage-
ment and analysis, education and training resources in multi-
omics field, and inks to other EATRIS Toolkits, e.g., Patient 
Engagement Resource Centre (PERC), Innovation Manage-
ment Toolbox (EJPRD IMT). The MOTBX is a resource that 
has been built with, and for the community. This means that 
researchers are not only welcome to use the MOTBX, but 
to support its further development by actively contributing 
with valuable resources. By providing such a toolbox to the 
research community, EATRIS aims to enable and support 
high-quality multi-omics research and accelerate the imple-
mentation of PM solutions.

Discussion

Detection of sensitive, specific, and robust biomarkers is 
one of the main pillars of personalized medicine. The detec-
tion of biomarkers through omics technologies can greatly 
impact decision-making in healthcare, contributing to the 
early detection of disease onset, allowing for timely inter-
vention and treatment, can help tailor treatments to indi-
vidual patients based on their genetics, disease subtype, or 
response to therapy, leading to more effective, targeted and 
less toxic treatments (Ahmed 2022; Olivier et al. 2019). 
Omics biomarkers can help predict a patient's likelihood of 
developing certain diseases, distinguish similar pathologi-
cal entities (differential diagnosis), provide prognostic infor-
mation about a patient’s likelihood to progress, or serve as 
prognostic markers of a patient’s response to specific treat-
ments, enabling proactive healthcare management strategies 
(Ahmad et al. 2023). In addition, in drug development and 
clinical trials, biomarkers based on omics can be used to 
identify suitable candidates for clinical trials, patient strati-
fication, monitoring treatment response, and estimating drug 
efficacy (Subbiah 2023).

Overall, integration of biomarker detection with omics 
technologies empowers clinicians to deliver more informed 
decisions, leading to improved patient outcomes and a shift 
towards precision medicine (Johnson et al. 2021; Wang and 
Wang 2023). In this context, the procedures for sample har-
vesting and processing, data integration with phenotypic 
traits, analysis, and interpretation of results play a key role 
in the final decision on action. Depending on the outcome, 
this linear path may become circular or branch, when it is 
decided that further samples are needed, and other inves-
tigations are required to get a deeper understanding of the 
subject matter. The process requires quality assessment 
and quality control measures at every step: technology 
platforms should be validated, data collection and manage-
ment transparent, data format and entries harmonized and 

https://www.ohdsi.org/data-standardization
https://cbioportal.imtm.cz
https://motbx.eatris.eu
https://motbx.eatris.eu
https://zenodo.org/records/10141670
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electronically accessible, and the entire process including 
the analysis process and decision making should be thor-
oughly documented (Ali et al. 2023). European Biomedical 
Research Infrastructures have been developed since the early 
second decade of the 2000s to play a leading role in develop-
ing, applying, and disseminating quality assurance guide-
lines in different areas along the translational trajectory. 
For instance, the European biobanking research infrastruc-
ture (BBMRI, www.​bbmri-​eric.​eu) is addressing quality in 
human biological samples and sample storage; EuroBioim-
aging (www.​eurob​ioima​ging.​eu) is providing image analy-
sis solutions and imaging quality assessment guidelines; 
ELIXIR (www.​elixir-​europe.​org) has been founded with 
the goal to develop and provide guidance for management 
and quality of life science data. While these and other infra-
structures exhibit a focus on specific technological expertise 
areas in translational research, EATRIS provides an integra-
tive platform to prevent siloing. At the cost of overlapping 
with individual, focused services of other infrastructures, 
EATRIS ensures services and quality provision along the 
entire translational trajectory (Fig. 1).

In this work we share some of the initiatives EATRIS 
sites have participated in within the EATRIS-Plus project. 
Our efforts support the notion that proficiency testing of 
sample processing technologies and laboratory performance 
can and should be done at different steps of the translational 
process, as quality increases the chance of developing 
meaningful molecular tools. Longitudinal proficiency test-
ing can lead to an improvement of laboratory performance, 
as it provides continuous feedback to the researcher on the 

quality of the sample processing. Application of commer-
cial or research reference material serves multiple purposes, 
from assessing the quality of the data generation process 
at a given time point, the development of the quality over 
time, and the possibility to merge batches of data into larger 
datasets by applying statistical measures.

To demonstrate the applicability of the quality assess-
ment strategies in the field of multi-omics applications 
mentioned above, EATRIS-Plus generated a multi-omics 
dataset, consisting of twelve-omics platforms, i.e. genom-
ics (whole genome sequencing (WGS) and array Compara-
tive Genomic hybridization (arrayCGH)), transcriptomics 
(mRNA and miRNA sequencing), epigenomics (DNA meth-
ylation sequencing using EM-seq) on blood cells, shotgun 
proteomics, targeted metabolomics (amino acids, very long 
chain fatty acids and acylcarnitines), untargeted lipidomics 
(positive and negative ion mode), qPCR-based miRNA pro-
filing on heparin and EDTA plasma from about 100 healthy 
individuals (Czech cohort). We applied quality control and 
data integration strategies to create a holistic molecular rep-
resentation of the individuals in the study. Together with ref-
erences to literature on quality aspects of multi-omics data, 
links to analysis platforms and reference material, among 
others, these multi-omics data are available via MOTBX 
(https://​motbx.​eatris.​eu), an open access multi-omics data 
platform that was created within the EATRIS-Plus project. 
The small sample size used in this “demonstrator” does not 
allow us to define the obtained results as reference values 
for each omics in a healthy population. The EATRIS-Plus 
community aims to make the multi-omics dataset available 

Fig. 5   The multi-omics toolbox  (MOTBX). The MOTBX   (https://​
motbx.​eatris.​eu) is an open access knowledge hub for translational 
researchers supporting development, implementation and adoption of 
multi-omics approaches for personalized medicine, including quality 
assessment aspects. The MOTBX has been developed by EATRIS-

Plus partners across Europe to support the translational biomedical 
research communities, as the result of collaborative work on data 
stewardship, the generation of a multi-omics dataset of healthy indi-
viduals, quality assessment studies, and the help and input of stake-
holders from industry and academia

http://www.bbmri-eric.eu
http://www.eurobioimaging.eu
http://www.elixir-europe.org
https://motbx.eatris.eu
https://motbx.eatris.eu
https://motbx.eatris.eu
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for further growth by data integration with other datasets, 
thereby increasing its value for biomedical research and 
biomarker discovery. The MOTBX, as a key public tool 
delivered by the EATRIS-Plus community, is a live resource 
open to the entire research community that will be updated 
and implemented with new relevant content generated by 
qualified EATRIS partners, beyond the EATRIS-Plus project 
lifetime.

Our efforts demonstrate that quality assessment is ben-
eficial and feasible at every step of the translational trajec-
tory. Testing and discussing the experiment design and plan 
against expert opinions, as provided, e.g., by the EATRIS 
Health Technology Assessment (HTA) services, can help 
focus on the study goal and outcome; longitudinal profi-
ciency testing serves to assess a decline or improvement 
in sample processing quality; unwanted technical variation 
can be assessed and possibly alleviated via the processing of 
reference material, e.g. in studies where multiple batches of 
samples have to be processed. Comparative quality assess-
ment can help harmonize and improve procedures and analy-
sis approaches. We trust that our findings will be beneficial 
for researchers in the field, as well contribute to discus-
sions within and across organizations that aim to improve 
healthcare and lifestyle through large scale studies (e.g., the 
Netherlands x-omics consortium (www.x-​omics.​nl) or the 
Healthy Brain Initiative (www.​healt​hybra​instu​dy.​nl).

Since multi-omics approaches seek to discover inter-
connected signatures for sample classification and network 
identification between cross-omics features, QC metrics 
should be suitable for evaluating the performance of each 
omics type in terms of data generation and integration, and 
should be related to these two research objectives: (a) the 
integration of multi-omics information for more robust 
sample classifiers and, (b) the identification of multilayered 
interconnected molecular signatures are the major goals for 
multi-omics profiling. Therefore, accessible multi-omics 
quality reference materials paired with fit-for-purpose per-
formance metrics are urgently needed (Beger et al. 2019; 
Salit and Woodcock 2021; Sene et al. 2017; Wang et al. 
2014). The use of multi-omics material in research is one of 
the measures that can be taken, but the definition of appro-
priate reference materials for omics implementation in clini-
cal practice is one of the most critical aspects for omics 
adoption in health care systems for personalized medicine.

Conclusion

Translational biomedical academic and clinical research 
requires step-by-step quality assessment and assurance 
measures in order to warrant successful clinical imple-
mentation of the findings. The European Infrastructure for 

Translational Medicine, EATRIS, provides resources, tech-
nologies, and expertise to assist along the translational tra-
jectory (www.​EATRIS.​eu). With the Multi-omics Toolbox 
(https://​MOTBX.​EATRIS.​eu), which is a community-driven 
“live resource” that will be fed and improved by new proto-
cols, workflow and other resources, the EATRIS-Plus project 
has delivered open-source tools for multi-omics data quality 
assessment.
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