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Abstract: Vaccines represent an essential tool for the prevention of infectious diseases.
Upon administration, a complex interaction occurs between the vaccine formulation and
the recipient’s immune system, ultimately resulting in protection against disease. Signif-
icant variability exists in individual and population responses to vaccination, and these
differences remain the focus of the ongoing research. Notably, well-documented factors,
such as age, gender, and genetic predisposition, influence immune responses. In contrast,
the effects of overweight and obesity have not been as thoroughly investigated. The evi-
dence indicates that a high body mass index (BMI) constitutes a significant risk factor for
infections in general, with adipose tissue playing a crucial role in modulating the immune
response. Furthermore, suboptimal levels of vaccine seroconversion have been observed
among individuals with obesity. This review provides a plausible examination of the immu-
nity and protection conferred by various vaccines in individuals with an overweight status,
offering a comprehensive analysis of the mechanisms to enhance vaccination efficiency.

Keywords: gender; obesity; immune response; adipokines; thyroid hormones; vaccine
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1. Introduction
The response to vaccination constitutes a multifaceted phenomenon that necessitates

the proper activation of the immune response, facilitating an adequate defense against infec-
tion or disease [1]. In recent years, particularly during the vaccination campaign against the
SARS-CoV-2 virus, the issues of overweight and obesity have gathered significant attention
due to observations indicating that individuals with obesity have an increased risk of severe
disease [2,3] and may exhibit a diminished response to vaccines [4–6]. Nonetheless, the
literature presents conflicting reports on obesity and vaccine response, highlighting the
necessity for a comprehensive understanding of the underlying mechanisms [4–7]. This
article seeks to review the relationship between adipose tissue, obesity, and the immune
response, examine the existing vaccine literature, and explore the potential mechanisms
implicated in this phenomenon.

2. Overview of Adipose Tissue Physiology and Physiopathology
Adipose tissue is a connective tissue characterized by the absence of fibroblasts and

the minimal presence of fibrous structures [8]. It falls under the category of loose connective
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tissue instead of dense connective tissue [8,9]. Its primary cellular component is adipocytes,
which store triglycerides crucial for energy metabolism. Adipocytes are the primary cell
type found in adipose tissue [8–10]. When energy is abundant, they store it as lipid droplets
and release it when the body requires it [8–10]. Figure 1 describes the different types of
adipose cells and their location. Most scholars categorize body fat based on the predom-
inant effects on overall health, offering a coherent framework for understanding their
implications. It has been shown that the response to stimuli, the beta-adrenergic response,
differs among the different adipocytes. Abdominal adipocytes are more responsive to
the lipolytic action of beta 1-adrenergic agonists. In contrast, gluteal adipocytes are more
responsive to the antilipolytic action of alpha 2-adrenergic agonists, and beta-3 adrenergic
receptors are involved in brown adipose tissue activation [8–10]. Moreover, non-shivering
thermogenesis is a process that generates heat to prevent hypothermia without the need for
muscle shivering. This mechanism is activated by cold exposure and also aids in maintain-
ing energy balance by dissipating excess heat [8–10]. Thyroid hormones maintain energy
balance and are implicated in thermogenesis [8–10]. Thus, depending on the location, the
response of adipocytes and adipose tissue differs, as shown in Figure 1.
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Figure 1. The figure represents the characteristics of the different adipose cells. The white adipose
cells contain the highest amount of stored lipids and are low responders to stimuli; the brown adipose
cells are involved in thermogenesis to control body temperature; and the beige adipose cells also
serve as lipid deposits, but control temperature upon stimulation. Beige adipose cells are found
along white adipose cells in the adipose tissue. Cell comp refers to organelle cell composition. The
white circles refer to lipid deposits, the blue circles refer to mitochondria, and the black circles refer to
the nucleus.

Statistically, women tend to possess a higher percentage of adipose tissue than men,
with a tendency to accumulate fat in the subcutaneous layer [11]. In contrast, men often
exhibit an accumulation of adipose tissue in the abdominal region, particularly within the
visceral compartment [11]. Visceral fat is correlated with an increased risk of developing
metabolic diseases.

Beyond their role in energy storage, adipocytes also have endocrine functions. They
secrete a variety of adipokines, which are crucial for the homeostasis of adipose tissue and
the link between adipose cells and the immune cells within the tissue. Table 1 summarizes
the most relevant adipokines studied in murine models and humans [12–26].
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Table 1. Adipokines and their role in inflammatory response.

Adipokine Pro-
Inflammatory

Anti-
Inflammatory Reference

Adiponectin No Yes [12,13]

Adipsin (complement
factor-D) No Yes [14,15]

Apelin No Yes [16]

Chemerin Yes No [17]

Leptin Yes Yes [18,19]

Meteorin like (IL41) No Yes [20,21]

Omentin-1 No Yes [22]

Resistin Yes No [23]

Vaspin Yes Yes [24,25]

Visfatin Yes No [26]

Other intermediates involved in adipose tissue physiological and physio-pathological
responses have been identified as playing a significant role in the physiological responses
of adipose tissue (Table 2). Some of these intermediates have been hypothesized to function
as adipokines; however, discrepancies remain in this area of research. In murine models,
the role of these intermediates has been analyzed and validated using normal analysis
or knockout models. However, in humans, most of the analysis has been validated in-
directly, either by measuring soluble intermediates (cytokines and receptor antagonists)
or by pharmacological inhibition, as is the case of dipeptidyl peptidase 4, retinol binding
protein 4.

Table 2. Other cytokines and factors involved in adipose tissue responses.

Effect Reference

CCL2 (MCP-1) Monocyte migration to adipose
tissue. [27]

CCL5 Monocyte migration to adipose
tissue. [28]

CCL22 Thermogenesis induction. [29]

IL-6 Local activation of immune cells.
Metabolic dysregulation. [30]

IFN

IFNα induces apoptosis in
adipocytes.

IFNβ regulates metabolism.
IFNγ pro-inflammatory response;

reduction in adipose tissue.
IFNλ1 enhances inflammatory

response.
IFNτ reduces inflammatory response.

[31]
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Table 2. Cont.

Effect Reference

TNFα Activation of tissue immune cells.
Metabolic dysregulation. [32,33]

IL-1 and IL-RA

IL-1 α hypertrophy of white adipose
tissue.

IL-1 β promotes adipogenesis in murine
and human adipose-derived stem cells.
IL-RA is upregulated in white adipose

tissue, and high circulating levels in
obesity.

[34–37]

Dipeptidyl peptidase 4

Plays a role in metabolic homeostasis and
inflammatory response. Inhibition of the

enzyme, combined with metformin,
induces a significant decrease in visceral

adipose tissue.

[38]

Fibroblast growth factor 21 Anti-inflammatory. [39]

Retinol binding protein 4 Induction of inflammatory response.
Inhibition of insulin signaling. [40]

Lipocalin-2
Produced by white adipocytes. Increases

adipose tissue. Involved in neutrophil
chemoattraction.

[41,42]

TGFβ Involved in tissue fibrosis and insulin
resistance. [43]

The role of adipokines and related factors are critical to adipocyte and adipose tissue
responses. However, these factors are not independent of other processes (endocrine,
immune cell migration, and others) in the complex process of adipose tissue homeostasis.

2.1. Adipose Tissue, Gender, and Immune Response

There is an increased prevalence of overweight and obese women [44]. Gender
differences are observed in the prevalence and phenotype of obesity, body fat distribution,
drug efficacy, representation in clinical trials, and the varied secondary effects associated
with bariatric surgery. Hence, gender emerges as a critical variable in the analysis of
obesity [45].

Sex hormones significantly influence gender differences in body composition. The
research indicates that women typically exhibit better insulin sensitivity despite having
higher adiposity levels than men [46]. This phenomenon may be related to decreased
insulin sensitivity observed after menopause, with estrogen therapy shown to enhance
insulin sensitivity [45,46]. Furthermore, androgens have distinct effects on adipose tissue
and insulin resistance that vary between the sexes [45,46]. Elevated androgen levels
in women correlate with increased insulin resistance, while lower testosterone levels in
men are linked to insulin resistance; this condition tends to improve with testosterone
replacement therapy [46]. The levels of adipokines also differ between genders [47–49],
and these variations are associated with the risk of developing type 2 diabetes [50]. It is
important to note that type 2 diabetes is a chronic metabolic disease, and its effects on
adipose tissue and immune response are complex.

Obesity has also been associated with the aging process due to an increased subclinical
inflammatory response; however, variations in hormonal conditions may lead to differing
experiences of aging between genders [51]. Estrogen is particularly linked to a preferential
increase in subcutaneous adipose tissue, as opposed to visceral adipose tissue, primarily
induced by testosterone. This distinction also correlates with the risk of various associated
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diseases, notably cardiovascular conditions and cancer [51]. Despite this indirect evi-
dence, it is imperative to recognize the significance of the hypothalamus–pituitary–adrenal
axis [48]. This axis is critical not only for the regulation of sex hormones but also for the
management of adipokines that play a vital role in maintaining adipose tissue homeostasis
and growth.

Luo and coworkers [52] analyzed a population of children and adolescents, finding that
the prevalence of inflammatory markers was higher in overweight and obese individuals.
They also observed gender differences. However, the difference was less prevalent in the
adolescent population. Silva and Iwasaki [53] summarized published data that post-acute
infection syndromes are prevalent in females.

A recent bioinformatic analysis [54] revealed that chromosome interactions in the
Eurasian admixed population showed that the X chromosome acted on autosomal
immunity-associated genes. Consequently, the immune response of admixed popula-
tions should not differ between ethnic groups. However, Persons and coworkers [55]
showed differences in obesity among different races in the USA.

Figure 2 delineates the distinctions between lean and obese adipose tissue, focusing
on the role of immune cells, cytokines, and sex hormones associated with visceral and
subcutaneous adipose tissue. It is essential to highlight that, notwithstanding the variations
presented in the figure, stable adipose tissue may exhibit immunological tolerance regard-
less of its size. However, under conditions of stress induced by peripheral or localized
factors, the cells and cytokines can provoke an inflammatory response within the tissue.
This response may result in the deregulation of metabolic processes and peripheral func-
tion, ultimately contributing to the development of insulin resistance and an exacerbated
inflammatory response.
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Figure 2. The distinct differences between lean and obese adipose tissue. The obese tissue is
characterized by the loss of a tolerogenic environment and the infiltration of immune cells. In adipose
tissue, the inflammatory cytokines are more prevalent than the tolerogenic cytokines present in lean
adipose tissue. The inflammatory response also involves pro-inflammatory cells as described in obese
tissue as compared to the tolerogenic cells in normal adipose tissue. The scheme also presents the
general impact of testosterone and estrogen depending on the site in which adipose tissue is located.
Subcutaneous adipose tissue, controlled mainly by female hormones, differs from abdominal tissue
in the low involvement in insulin resistance and local and peripheral inflammation. An increase in
abdominal adipose tissue has been linked to cardiovascular diseases and diabetes.

Numerous authors have documented variations in the immune response based on
sex [56,57]. However, the mechanisms underlying specific responses remain undefined, and
some researchers inappropriately extrapolate the findings from rodent studies to humans.
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Popotas and colleagues [58] examined Toll-like receptors (TLRs) as potential mechanisms
for elucidating responses to pathogens and other stimuli. Their rationale is grounded in the
fact that the X chromosome influences TLR regulation [58]. Notably, there are disparities in
TLR receptor expression and functionality when comparing humans and mice. Specifically,
TLR7 and TLR8 are expressed at higher levels in female immune cells than in male cells,
while TLR4 exhibits the opposite pattern [58]. Furthermore, TLR9 signaling is significantly
elevated in females, correlating with increased production of interferon types I and II [58]. It
can be proposed that the immune response may depend on the initial signaling that induces
cellular activation. Further research is warranted to explore this matter comprehensively.

Recently, Wang P et al. showed in a murine model that TLR9 deficiency leads to
obesity [59]. This receptor has also been associated with autoimmune diseases [60]. How
obesity, gender, and autoimmune diseases are connected is still under investigation.

Layug and coworkers [61] also reviewed the difference in CD8+ lymphocyte response,
showing that females have more CD8+ effector and memory lymphocytes to respond
to pathogens. In addition, the CD8+ lymphocyte response in males with autoimmunity
and cancer is characterized by cell exhaustion compared to the females, in which the
effector cells are responsible for the process. Forsyth and coworkers partially share the
proposal since they envision the responses to the genetic impact of the X chromosome [62].
Several points on the X chromosome have been involved in innate and adaptative immune
responses, and, according to the authors [62], these events are responsible for the increased
susceptibility of males to infections. There are still many enigmas to solve in the puzzle.
Still, it can be concluded that gender, sex hormones, and adipose tissue endocrine functions
influence the efficiency of the immune response.

2.2. Thyroid Hormones, Gender, and Immune Response

A recent review conducted by Hoffmann and colleagues [63] indicates that sex hor-
mones influence immune cell responses by altering both cell function and migration. The
authors assert that specific receptors, primarily evaluated through pharmacological ag-
onists, antagonists, or murine knockout models, are crucial for defining these immune
cell responses.

On the other hand, hypothyroidism has been related to weight gain and obesity [64].
Hyperthyrotropinemia associated with obesity may also lead to an increased susceptibility
to thyroid autoimmunity and subsequent hypothyroidism [64]. Elevated levels of leptin
may contribute to the hyperthyrotropinemia observed in obesity and may also heighten
the risk of developing thyroid autoimmunity, potentially leading to subsequent hypothy-
roidism [64]. Levothyroxine treatment has a limited effect on obesity [65]. The effect of
levothyroxine treatment in subclinical hypothyroidism and sex hormone production has
not been well described. According to Sror-Turkel et al. [66], low TSH and T3 are good prog-
nostic of mortality in patients with severe COVID-19 infection [66]. In addition, vaccines
against SARS-CoV-2 have been linked to thyroid dysfunction [67].

Autoimmune thyroiditis is more prevalent in women than in men [68]. Although
most autoimmune disorders have a genetic background, viral infection has been related to
this autoimmune disorder [68]. Similarly, treatment with checkpoint inhibitors generates
thyroid dysfunction, and levothyroxine partially restores thyroid function and immune
response [69].

Reduced thyroid hormone levels are directly associated with decreased estrogen
and androgen production [70]. In contrast, high levels of thyroid-stimulating hormone,
commonly observed in hypothyroidism, are frequently correlated with increased prolactin
levels [70]. This association may result in a delayed luteinizing hormone (LH) response
and lead to irregularities in ovulation and spermatogenesis [70]. Elevated prolactin levels
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impact various cellular responses, including those of the immune system [70]. Conversely,
progesterone promotes thyroid hormone secretion, establishing a reciprocal relationship
between these hormones. It can be concluded that an isolated evaluation of sex hormones in
the context of immune responses presupposes normal prolactin levels and normal thyroid
hormone function. To address this issue, Table 3 compares the effects of the sex hormones
and thyroid hormones on the immune response.

Table 3. Effect of estrogen, progesterone, androgens, and thyroid hormones on immune cells.

Immune Cells Estrogens Progestins Androgens Thyroid Hormones

Monocytes/macrophages

Inhibit
pro-inflammatory
cytokines. Increase

phagocytosis

Inhibit inflammatory
response and inhibit

TLR4 and TLR9
activation

Enhance macrophage
migration.

Anti-inflammatory
response

Increase phagocytosis
(T3/T4). Increase M1

and decrease M2
differentiation (T3)

Dendritic cells

Promote cell
differentiation.

Promote
pro-inflammatory

cytokine production.
Enhance T-cell

activation

Decrease secretion of
pro-inflammatory

cytokines

Decrease
pro-inflammatory

cytokine production.
Decrease T-cell

stimulation

Promote maturation
(T3/T4).

Pro-inflammatory role
(T3)

Neutrophils Enhance cell activation
and chemotaxis

Inhibition of neutrophil
activation

Inhibition of neutrophil
activation

Increase in oxidative
burst and phagocytosis

(T3/T4).

Mast cells Increased inflammatory
response

Decreased
inflammatory response

Anti-inflammatory
response

Mast cells store T3 and
may impact thyroid

function. T3 activates
mast cells

Eosinophils Enhanced cell
activation

Decreased cell
activation No or low response

Not well defined.
Activated cells affect

the thyroid gland

NK cells Activate NK cells Modulate NK activity No main effect on NK
cells

Increased NK cytotoxic
activity (T3/T4)

NKT cells Decreased stimulation Decreased stimulation No response
No thyroid-stimulating

hormone receptor is
present

T γδ cells
Induce production of
IL-17 and promote an

increase in Th17
Tolerogenic responses Induce cell activation

Not well defined.
Activated cells may

affect the thyroid gland

T cells Increase in Th1 and
Th17

Increase in Th2 and T
reg cells Decrease in Th17 cells

Increase in proliferative
response and
cytotoxicity

B cells

Increase the production
of all types of

antibodies, including
IgE

Increase the production
of IgG and IgA

Decrease in IgG
secretion

Increase in proliferative
and lymphopoiesis
No defined role in

antibody production

Table legend. The information presented is based on the references for sex hormones [56–58,61–63,71–74] and
thyroid hormones [70,75–81].

The relationship between obesity and the risk of autoimmune thyroid dysfunction
(more prevalent in females), which serves as the primary cause of hypothyroidism in adults,
remains an area of considerable uncertainty [70,81]. The studies indicate that the prevalence
of autoimmune thyroid dysfunction among individuals with obesity is approximately 10%
in the pediatric population and varies between 10% and 60% in adult populations [82]. A
study in the USA reported a positive association between BMI and waist circumference
with serum TSH and T(3) levels but not fT(4) in euthyroid adults [83], and the increase
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in obesity was linked to a decrease in sexual function. Consequently, thyroid hormones
are a critical link between hormone dysfunction and metabolic changes in overweight
and obesity.

3. Adipocytes as Antigen-Presenting Cells
Recent research has highlighted the involvement of adipocytes in immune responses,

as they can recruit and activate immune cells [84,85]. They are antigen-presenting cells
(APCs) expressing CD1d and MHC class I and II molecules [86,87]. Adipocytes can directly
activate CD4+ T lymphocytes through the antigen: the MHCII complex in a contact-
dependent manner [86,87]. A recent study has shown that adipocytes also express MHC
class II molecules, along with co-stimulatory molecules CD80 and CD86, and their ex-
pression is significantly heightened in response to high-fat diets [88]. While adipocytes
display MHC class I molecules like other nucleated cells, there is still inconclusive evidence
regarding direct interactions with CD8+ T lymphocytes via the antigen: the MHCI com-
plex [89]. Conversely, studies have demonstrated that CD1d expressed in adipocytes can
present lipid antigens to invariant natural killer T (iNKT) cells, effectively stimulating their
activation [90,91].

In obesity, both local and systemic immune dysfunctions arise from metabolic
stress [92]. In adipose tissue, the immune cells that are normally anti-inflammatory and
immune-regulatory—such as M2-type macrophages, regulatory T cells (Tregs), Th2, and
type 2 innate lymphoid cells (ILC2s)—are replaced by a higher number of pro-inflammatory
immune cells. These include M1 macrophages, Th1, Th17, Th22, and CD8+ T lympho-
cytes, which secrete pro-inflammatory cytokines, like IL-1β, IL-6, IL-17, and IFN-γ [93,94].
This pro-inflammatory response may be exacerbated by intestinal inflammation associ-
ated with obesity [95]. In addition to the local immune changes within adipose tissue,
systemic immune adaptations are also evident in obesity, characterized by increased circu-
lating numbers of monocytes, neutrophils, and lymphocytes (Th1, Th17, and Th22), along
with a decrease in circulating Treg lymphocytes and elevated levels of pro-inflammatory
cytokines [93–95]. Collectively, these alterations create a pro-inflammatory state of the
immune system in obese individuals, marked by heightened cytokine levels both locally in
adipose tissue and systemically [93]. This chronically elevated inflammatory condition is
believed to stimulate regulatory pathways that ultimately restrict the immune response to
acute infections. A notable example is the compromised type I interferon antiviral response
observed in individuals with obesity [31].

Table 4 illustrates the different cells directly and indirectly involved in adipose tissue
physiology and physiopathology. The difference with Figure 2 derives from a comprehen-
sive analysis of all the possible cells described in the white adipose tissue increase, and
stress response is present [96–123]. It is important to note that the role of mesenchymal stem
cells in tissue repair and remodeling is recent and is still under investigation, as well as
the possible role of follicular B and T cells in the link between lymphoid organs, leukocyte
migration, immune response, inflammation, and autoimmunity [124].

The mechanisms by which leptin exerts its effects on immune cells are complex, par-
tially due to the presence of multiple isoforms of the leptin receptor generated through
alternative splicing, each with distinct signaling capabilities [125]. For example, T lympho-
cytes predominantly express the long form of the leptin receptor, particularly following
activation, whereas neutrophils primarily express the short form. On the other hand, NK
cells express short- and long-form receptors. Individuals with genetic mutations that im-
pair the synthesis of leptin are often morbidly obese and exhibit compromised immune
defenses [125]. Obesity leads to hyperleptinemia, which can adversely affect the immune
response [125,126]. Moreover, obesity has been associated with increased thymic senes-



Int. J. Mol. Sci. 2025, 26, 862 9 of 31

cence and a reduction in the diversity of the T-cell repertoire, potentially impacting immune
surveillance [125,126]. Numerous studies, reviewed by Muscogiuri and coworkers [45],
have highlighted that obesity constitutes a significant risk factor for postoperative and
surgical nosocomial infections.

Table 4. Summary of the effects of immune cells and mesenchymal stem cells on adipose tissue.

Cell Type Effect Reference

Neutrophils

Retain phagocytic activity, increase basal superoxide, and
chemotaxis.

Absolute neutrophil counts and neutrophil to
lymphocyte ratio may indicate adipose tissue

inflammation.
Relationship of microbiota with neutrophil infiltration in

adipose tissue.

[96–98]

Eosinophils Protect adipose tissue from inflammation. [99]

Mast cells Mast cells are activated in human adipose tissue and
localized preferentially in fibrosis depots. [100]

Macrophages M2 macrophages in lean tissue and M1 in inflammatory
tissue. [101]

iNKT cells
In lean adipose tissue, they can be activated by CD1 and
can incorporate lipids, generating a local inflammatory

response.
[91,103]

NK Present in adipose tissue. Tolerogenic response in
adipose tissue? Different responses depending on gender. [104,105]

Tγδ Inhibit inflammatory response. [106]

B cells

Dysfunctional B cells in obese individuals.
The lean adipose tissue contains B regulatory and B1

cells. B1 cells produce IgM antibodies for primary innate
immunity. B2 cells usually generate protective antibodies
in lymphoid organs. However, they participate in local

inflammation and promote insulin resistance after
migrating to white adipose tissue.

[107–109]

Th1 cells Promote obesity-associated inflammation. [108,111]

Th2
Stabilize adipose tissue and induce M2 polarization. A

decrease in Th2 cells in the tissue is due to increased local
IFNγ and inflammation.

[108,111]

Th17 Pro-inflammatory role.
Related to IL-23 secretion in adipose tissue. [112,113]

Th22 IL-22 is produced by innate lymphocyte cells upon tissue
inflammation. It is related to insulin resistance. [114]

CD8 cells Cytotoxic response. Adipose tissue inflammation. Tissue
remodeling. [115,116]

Mucosal-associated invariant T (MAIT)
cells Secrete IL-17, inducing local tissue inflammation. [117,118]

T follicular (TF) cells. TFh helper and
TFreg regulatory cells

Modulate the response of B cells in adipose tissue.
Impairment of TF regulatory cells is related to

autoimmunity.
[119,120]

Follicular B cells

In adipose tissue, they induce inflammation depending
on the cytokine milieu.

Mesenchymal adipose stem cells induce the expansion of
IL-10-producing B cells—possible role in autoimmunity.

[121]

Mesenchymal stem cells
Anti-inflammatory in the presence of Treg and Th2

milieu. Pro-inflammatory in the presence of
inflammatory cytokines.

[122,123]

Deng and colleagues [127] showed that low serum leptin levels in young and elderly
healthy subjects are associated with lower antibody responses to influenza and hepatitis B
(HBV) vaccines. Leptin stimulates the differentiation and function of human and mouse
TFH cells in culture and is also required to maintain TFH function and sustained effective



Int. J. Mol. Sci. 2025, 26, 862 10 of 31

humoral immunity [127]. TFH is necessary to support and maintain effective humoral
immunity to infection and immunization in mice. The mechanism of action of leptin is
regulated in part by activation of the Stat3 and mTOR (mechanistic target of rapamycin)
pathways [127]. Their results suggest that leptin is a physiological regulator of TFH function
and that leptin deficiency may serve as a biomarker to identify the risk of low vaccine
efficacy. Moreover, serum leptin levels did not always correlate positively with absolute
antibody titers after vaccination or changes in antibody titers in adults vaccinated against
influenza or HBV. Overall, their data [127] support the notion that leptin is a natural
regulator of TFH cells in the general population. This should not be interpreted to mean
that higher levels of leptin are associated with higher vaccine responses; on the contrary, in
their view, leptin constitutes a metabolically mediated threshold factor that is needed to
mount normal vaccine responses.

Investigating the inflammatory response within adipose tissue presents a complex sce-
nario [128–130]. The infiltration of various cell types into this tissue, driven by metabolic de-
mands or stressors, increases chemokine production [128–130]. This increase in chemokines
subsequently facilitates the migration of cells, thereby fostering an inflammatory en-
vironment [129]. The activation of macrophages by external stimuli results in a pro-
inflammatory profile characterized predominantly by M1 macrophages, in contrast to
the M2 macrophages found in stable adipose tissue. A parallel is also observed between
CD8 and CD4 T lymphocyte infiltration (Th1, Th17, and Th22), in which T regulatory lym-
phocytes are displaced. Consequently, there is a lack of tolerogenic tissue response and a
high local inflammatory response. Moreover, neutrophil migration appears to be influenced
by IL-17 production [129,130]. B cells’ role seems to depend upon the infiltration of cells
and the presence of T lymphocytes. The polyclonal stimulation of B cells may generate
the formation of autoantibodies in the tissues [107,108]. The inhibition or resolution of
the inflammatory response passes by the inhibition of IL-1β signaling by the production
of IL-1RA and the secretion of TGFβ [129,130]. The process can be facilitated by the pro-
duction of IL-10 by the local immune cells. It is also possible that the secretion of lipids
from activated adipocytes modulates the inflammatory response. The saturated lipids may
enhance the production of lipid intermediates, facilitating the inflammatory process [131].
On the contrary, the presence of ω3 state fatty acid resolves inflammation [132,133].

It is important to note that the inflammatory response in adipose tissue is not uniform
across different types [10]. Specifically, the increase in visceral adipose tissue correlates
more strongly with insulin resistance than the increase in subcutaneous adipose tissue [45].
This suggests that subcutaneous fat may be less stable and more inflammation-resistant
than visceral fat. Additionally, alterations in energy demands or surgical interventions may
affect the dynamics of visceral adipose tissue, potentially enhancing the local immune cell
response by stabilizing the inflammatory environment [45,46].

Cellular senescence is characterized by an irreversible arrest of the cell cycle, typically
initiated by various forms of cellular stress [134–136]. Cells that undergo senescence ex-
hibit a senescence-associated secretory phenotype (SASP), which includes the secretion
of pro-inflammatory cytokines, chemokines, growth factors, and proteases [136–139]. Im-
munosenescence represents a complex process associated with aging, involving significant
changes in the architecture and functionality of immune organs, ultimately leading to
compromised innate and adaptive immune responses [136–139]. Although the precise
molecular and cellular mechanisms are not fully elucidated, several prominent features
of immunosenescence have been identified [136–141]. These include thymic involution,
dysfunction of hematopoietic stem cells, disruption of T and B lymphocyte homeostasis,
chronic low-grade inflammation (often referred to as inflammaging), accumulation of
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senescent cells, impaired antigen response, mitochondrial dysfunction, genomic instability,
and enhanced stress responses [136–141].

Obesity contributes to the accelerated aging of adipose tissue, promoting the prema-
ture senescence of adipocytes [136–141]. Senescent adipocytes release increased quantities
of free fatty acids (FFAs) and adipokines, including leptin, TNF-α, and IL-6 [136–141].
The SASP phenomenon can potentially induce senescence in adjacent tissues, particularly
within the immune system [136–141]. Furthermore, adipose tissue in individuals with
obesity is markedly infiltrated by B cells [139]. These adipose tissue-resident B cells are
either recruited or activated by the byproducts of altered lipolysis, and the adipokines are
secreted by expanding adipose tissue as they express the corresponding receptors [139].
Interestingly, Valentino [142] and coworkers analyzed the role of autoantibody formation,
cell senescence, and aging, providing a fascinating insight into the process and suggesting
possible therapeutic targets. The roles of B1 and B2 in adipose tissue, normal immune
response, and autoimmunity are still under research.

Adipocyte-Derived Extracellular Vesicles

Circulating extracellular vesicles (EVs) are recognized as significant mediators of
cell-to-cell communication and the exchange of biological messages [143,144]. These lipid
bilayer nanoparticles range in size from 50 to 1000 nanometres and can be released by
nearly all cell types [143]. They are present in various body fluids, including blood, saliva,
urine, breast milk, and amniotic fluid. Notably, adipose tissue serves as a crucial source
of circulating EVs. The research indicates that individuals with obesity generally exhibit
elevated levels of EVs in their serum compared to those without [144,145]. The underlying
cause of this increase remains unclear; however, it has been suggested that fatty tissue in
the context of obesity may produce EVs at a higher rate or exhibit a reduced capacity for
EV elimination by the liver. Importantly, interventions, such as bariatric surgery or caloric
restriction, have been shown to decrease the number of circulating EVs, implying that a
reduction in adipose tissue mass correlates with diminished EV secretion [145]. Recently,
EVs have been acknowledged as effective messengers for intercellular communication.
Emerging evidence highlights that adipose-derived EVs play a vital role in the interac-
tions among macrophages, adipocytes, and adipose tissue-derived stem cells, significantly
influencing immunometabolism in healthy and obese states [142–145].

The significance of microRNAs (miRNAs) in the context of adipose tissue and inflam-
mation is noteworthy. EVs derived from adipocytes and immune cells are instrumental in
differentiating various cell types within the tissue. Rakib and colleagues [146] reviewed a
potential mechanism involving miRNA-34a, which is secreted by activated adipose tissue
and functions to inhibit the transcription factor KLF4, thereby obstructing the transfor-
mation of M2 macrophages [146]. Conversely, miRNA-326 secreted by M1 macrophages
enhances the expression of RORC2, resulting in the upregulation of Th17 cells, which
facilitates the inflammatory response [146].

Additionally, the miRNA-34 family is implicated in cellular senescence. In conjunc-
tion with miRNA-155, miRNA-34 contributes to telomere shortening [146]. Furthermore,
miRNA-146 and miRNA-181 promote cellular senescence, while miRNA-335 is involved
in “inflammaging” [146]. These molecular mechanisms lead to an exacerbated local in-
flammatory response due to increased cell senescence and mortality, which can, in turn,
promote peripheral inflammation. In conclusion, EVs derived from adipose tissue may
be pivotal in mediating tissue and multi-organ senescence and contributing to peripheral
inflammatory responses.

Current investigations involving seemingly healthy, obese individuals indicate notable
variations in the size, quantity, and composition of EVs. Compared to non-obese individu-
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als, these variations appear to correlate with specific metabolic parameters, such as glucose
levels, insulin sensitivity, and serum lipid profiles. Considering these observations, it is
hypothesized that EVs play a significant role in progressing metabolic and cardiovascular
complications associated with obesity [147]. However, the precise mechanisms underlying
this process remain to be elucidated [148].

4. Obesity and Infectious Diseases
The research regarding the interaction between obesity and various infectious agents

remains contentious and presents a highly intricate scenario [148,149]. The increased
susceptibility to numerous types of infections among individuals with obesity is not yet
fully understood. Obese individuals can have micronutrient deficiency [150], which may
affect their response to viral infections, as observed in SARS-CoV-2 [151,152]. For example,
the Edmonton obesity staging system reported that the impairment of vitamin D nutritional
status and metabolic profile was associated with worsened obesity [153,154]. Thus, vitamin
D deficiency may be linked to the impaired immune response observed in SARS-CoV-
2 infection in obese individuals, and EVs may play an essential role in the severity of
the disease.

Additional cofactors frequently linked to obesity may indirectly contribute to the
development or exacerbation of infectious diseases, even in the absence of a clear causal
relationship [148,149]. These cofactors encompass modifications in respiratory physiology,
skin, and soft tissue integrity changes; co-morbidities, such as type 2 diabetes mellitus
and cardiovascular disease; pharmacological interventions; and inadequate antimicrobial
treatment [148,149].

The outcomes of infections in obese individuals and animal models appear to vary
depending on the extent of the infection, likely due to differential impacts on the metabolic
pathways of immune cells [10]. Obesity is a significant disruptor of bodily homeostasis,
leading to alterations in immune metabolic pathways, often resulting in a diminished
protective immune response to infections. The specific modifications in immune response
due to obesity are still being fully elucidated. As documented in Table 2, the decreased
production of IFN type I and the high secretion of IL-1RA may be related to a reduced
effective response in obese individuals [31,36]. Pugliese et al. [149] analyzed the most
relevant infection sites for obese patients. Upper respiratory tract infections are most
commonly associated with pharyngitis, sinusitis, laryngotracheitis, lower respiratory in-
fections, bronchitis, bronchiolitis, and pneumonia. Since sleep apnea in obese individuals
increases, the risk of respiratory infections increases [155]. Hypoxia may jeopardize the re-
sponse to treatment. Then, urinary tract infections (cystitis, urethritis, and pyelonephritis),
skin infections (high incidence of cellulitis, candida, erysipelas, and onychomycosis), and
surgical-site infections.

A growing body of research demonstrates that women living with HIV experience a
significantly elevated risk of developing metabolic disorders in comparison to their male
counterparts [156]. These metabolic disorders encompass weight gain and obesity, type 2
diabetes mellitus, dyslipidemia, bone loss, and sarcopenia. Conversely, men diagnosed with
HIV exhibit a greater susceptibility to conditions such as hepatic steatosis and fibrosis [156].

Table 5 summarizes the relationship between viral infections, adipose tissue, obesity,
and interferon response in different reports [157–171]. The table aims to provide the reader
with insights concerning the pathogens, the possible role of adipose tissue to be altered
upon the inflammatory response generated by the infection, and the effect of the virus
on the IFN response. The decreased antiviral response and chronicity can be potentiated
by the intermediates generated by adipose tissue as part of the response to the infection;
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however, the role of adipose tissue as a reservoir of virus or the role of adipose tissue on
viral escape cannot be overlooked. More research is required in this area.

Table 5. Viral infection, adipose tissue involvement, and IFN responses.

Virus Adipose Tissue Involvement IFN Responses Reference

Adenoviruses Yes
Suppression. Chronic

infection. Obesity-induced
viral infection?

[156]

Arboviruses Yes Suppression. Chronic
infection [157]

Herpesviridae Yes

HSV-1 suppression through
miRNA

CMV-multiple antagonistic
mechanisms

[158]

Slow virus (Prion) Yes Inhibition of IFN signaling [158]

Dengue Yes Inhibition of INF signaling [159,160]

Papillomavirus Yes IFN signaling decreased [161,162]

HCV Yes Antagonism of IFN signaling.
Chronicity [163]

HIV Yes Antagonism of IFN signaling.
Chronicity [164]

RSV Yes Inhibits IFN signaling [165,166]

Coronavirus Yes IFN signaling is inhibited [167,168]

Influenza Yes IFN signaling is inhibited [169]

Hepatitis B virus Yes IFN response impaired [170]

Hornung et al. [172] revised different in vivo and in vitro models to study the role of
adipose tissue in bacterial and viral infections; however, most of the effort involved murine
models, which are informative but do not necessarily follow the same response as humans.
Hales and coworkers [173] explored the role of leptin in Streptococcus pneumonia infections
and the difference between the results in humans and mice, showing the importance of the
hormone in immune cell activation and response.

However, critical elements have received insufficient attention in the existing literature.
The first pertains to the increase in cell death among underweight individuals with sepsis in
the intensive care unit and the differences in gender responses observed in overweight and
obese populations [174]. These observations prompt new inquiries regarding the incidence
of infections and the immune response in obese individuals and probably better therapeutic
strategies to protect individuals from severe infections.

5. Impact of Obesity on Vaccination Response
While substantial progress has been made through vaccination in protecting against

infectious diseases, specific populations seem to exhibit suboptimal responses to these
interventions, increasing the vulnerability of these groups to vaccine-preventable illnesses.
Obesity may significantly influence vaccine immunogenicity and efficacy, potentially ex-
acerbating the likelihood of an inadequate immune response [4–6]. The negative impact
of obesity on immune system functionality raises concerns regarding the effectiveness of
the vaccine within this demographic. The initial studies indicating a potential correlation
between obesity and compromised immune response to vaccinations were published in
1985, focusing on a cohort of obese hospital employees who demonstrated a poor response
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to the hepatitis B vaccine [175]. Therefore, it is imperative to explore strategies to enhance
the protection of this at-risk population.

5.1. Inactivated or Subunit Vaccines

Inactivated vaccines consist of whole-cell formulations containing a version of the
entire viral or bacterial pathogen that has been rendered inactive. Conversely, subunit
vaccines comprise only specific components of the virus or bacteria that contain the neces-
sary antigens to elicit an immune response while excluding all other molecular elements
present in the pathogen [176]. Inactivated or subunit vaccines do not resemble the live
pathogen, and therefore, the immune response is usually defined by antibody production
and neutralizing antibodies the critical endpoint to protect against the infection [176].

Obesity may impede an individual’s capacity to generate an effective immune re-
sponse to vaccination or infection, a phenomenon attributable to increased body fat and
elevated leptin levels. Callahan et al. [177] undertook a comprehensive analysis of pooled
data from three independently conducted, NIH-supported phase 2 clinical trials assessing
monovalent, unadjuvanted, split-virus pandemic H1N1 vaccines administered at eight Vac-
cine and Treatment Evaluation Units (VTEUs) between August 2009 and March 2010. One
trial was conducted with children and adolescents (6 months to 17 years old), utilizing
the Sanofi Pasteur vaccine. The other two trials, designed with identical methodologies,
recruited non-pregnant adults (age ≥ 18 years) and used vaccines manufactured by Sanofi
Pasteur or CSL Biotherapies. Participants were randomly assigned to receive two intramus-
cular injections, which contained either 15 or 30 International Units (IUs) of hemagglutinin
(HA), measured by high-performance liquid chromatography, administered 21 days apart.
The final potency evaluation of the Sanofi Pasteur vaccine, conducted using the single
radial immunodiffusion (SRID) assay, indicated an HA content of 22–25 IU for the 15 IU
dose (analyzed across two different batches) and 47 IU for the 30 IU dose. Among adult
subjects, nearly 30% were classified as obese or morbidly obese, 37% as overweight, and
only 1% as underweight. The findings concluded that a single dose of the vaccine prompted
higher hemagglutination inhibition geometric mean titers (GMTs) on day 21 in obese adults
compared to individuals in other BMI categories [175].

Clarke et al. [178] examined the effects of obesity on responses to the quadrivalent
influenza vaccine in children. This study enrolled children classified as having obesity
(BMI) ≥ 95th percentile for age and gender) and those without obesity (BMI < 95th per-
centile). Blood samples were collected before vaccination and at one and six months
post-vaccination to evaluate antibody responses utilizing the hemagglutination inhibition
assay. The immunogenicity of the vaccine was compared across the two groups of children.
Both groups, those with and without obesity, demonstrated robust and sustained anti-
body responses to the tetravalent influenza vaccine six months post-vaccination. Sheridan
et al. [179] reported that a higher BMI initially correlated with an enhanced antibody re-
sponse following vaccination with the inactivated trivalent influenza vaccine. Nonetheless,
twelve months after vaccination, a higher BMI was associated with a more significant
decline in antibody levels and a decreased presence of specific CD8+ T lymphocytes and
IFNγ production in obese individuals [179].

Huang et al. [180,181] conducted a study involving children aged 8 to 18 years who
had completed their routine childhood immunizations. Serum samples were analyzed
using ELISA to assess antibody levels against diphtheria, tetanus, Haemophilus influenzae
type B, and Streptococcus pneumoniae, in addition to measuring serum HbA1c levels. BMI
percentiles and HbA1c levels were utilized as continuous variables about antibody titer
levels. The study revealed that 43% of the children had a BMI at or above the 95th percentile
(n = 69). A notable negative correlation was observed between BMI and the antibody titers
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for pneumococcal, diphtheria, and tetanus vaccines, with a significant correlation identified
explicitly for the S. pneumoniae serotype P3 titer (p = 0.037). The findings indicate increased
BMI and HbA1c levels are associated with lower overall vaccine titers. Additionally, the
study highlighted that obese children (BMI ≥ 95%) exhibited a higher likelihood of having
impaired pneumococcal titers compared to their non-obese counterparts (BMI 25–94%) in a
prospective, population-based cohort study [180,181].

Zimmerman and Curtis [182] analyzed critical elements that affect vaccine response.
Several aspects, such as environmental factors, infection, viral, bacterial, and parasitic,
negatively impact the immune response against inactivated and subunit vaccines. Conse-
quently, the low titer of antibodies and the low memory response may require revaccination
or the design of new vaccines with a higher immune response activation.

5.2. Live-Attenuated Vaccines

Vashishtha and Kumar [183] reviewed the efficacy of various vaccines regarding
their ability to prevent infection and disease and their longevity of protection. Live-
attenuated vaccines, such as those for measles, rubella, and yellow fever, provide long-
lasting immunity. In contrast, vaccines for hepatitis A, BCG, varicella zoster, and mumps
offer moderate protection, while vaccines for dengue, herpes, and rotavirus yield only
short-term immunity [183]. The variability in the protective efficacy of vaccines is linked to
the immune system’s ability to recognize antigens, which various conditions may influence,
not only obesity, as elucidated by Zimmerman and Curtis. [182]. Obesity is not a critical
factor in live-attenuated vaccine efficiency [182,183].

Dumrisilp and colleagues [184] conducted a prospective study with children aged be-
tween seven and twenty-five years from Bangkok and the obesity outpatient center at King
Chulalongkorn Memorial Hospital. The enrolled individuals, 212, were vaccinated with
MEVAC™-A (hepatitis A live-attenuated virus). Blood samples were collected to assess the
levels of anti-HAV antibodies one day before vaccination and 8–9 weeks post-vaccination.
According to prior studies, an anti-HAV IgG titer of 20 mIU/mL is deemed seroprotective.
Statistical analysis revealed that a single administration of the live-attenuated hepatitis
A vaccine is both safe and highly immunogenic in subjects classified as either under-
weight/normal weight or overweight/obese during the brief follow-up period. Truncal
obesity and female gender were identified as factors associated with an enhanced immune
response; however, no significant differences in anti-HAV titers were observed between the
non-obese and obese groups, nor between the child and young adult cohorts. It is impor-
tant to note that the duration of follow up for evaluating safety and immunogenicity was
relatively brief, limited to only nine weeks [184]. Thereafter, Soponkanabhorn et al. [185]
conducted a retrospective study utilizing blood samples from Dumrisilp et al. [184]. The
results of this study suggest that obesity does not affect the short-term cellular immune
response to HAV live-attenuated virus vaccination. However, this clinical trial had several
limitations, one of which was the absence of data regarding cardiometabolic risk factors,
specifically in obese participants, and the other limitation of the clinical trial is the relatively
long interval between vaccination and subsequent immunogenicity testing. The long period
between vaccination and evaluation may explain the absence of substantial improvement
in vaccine-induced cell-mediated immunity in most participants [184,185].

Fonzo et al. [186] conducted a clinical trial involving 2185 students at the School
of Medicine, University of Padua (815 males and 1370 females). The objective of this
study was to examine the relationship between BMI and current antibody levels following
vaccinations for measles, mumps, and rubella (MMR) and a recombinant hepatitis B virus
(HBV), which were administered during childhood. The BMI was classified based on the
World Health Organization criteria. There is no significant association between BMI and
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the persistence of immune response after HBV and MMR vaccinations. Furthermore, no
noteworthy sex-related differences were observed in the results [186].

SARS-CoV-2 inactivated vaccines decreased antibody titer production in individuals
with severe obesity and BMI ≥ 40 [187]. A study using recombinant SARS-CoV-2 vaccine
and inactivated influenza virus generated similar results; a low reaction was observed
in obese individuals [188]. Furthermore, in a small observational study by Frasca and
coworkers [189], the authors showed differences in B defects in obesity and an improvement
when individuals successfully lost weight. These results suggest that weight reduction
may decrease B lymphocyte impairment. However, these results should be analyzed with
care since vaccination routes, schemes, and doses were probably inappropriate for the
obese population, especially morbid obesity. Well-defined critical trials should investigate
the impact of overweight and obesity, considering the endocrinological response, gender,
and age.

5.3. RNA and Recombinant Vaccines

Messenger RNA (mRNA) vaccines prompt the body’s cells to make a specific protein
fragment to serve as an antigen to generate an antibody response [190]. On the contrary,
recombinant protein vaccines are created through conventional genetic engineering based
on targeted pathogens’ proteins that can stimulate the immune system [191]. Unlike other
vaccine types that utilize viral genetic material or vectors, recombinant protein vaccines use
only antigenic proteins [191]. In both cases, generating specific and neutralizing antibodies
is the primary goal.

Clinical trials examining BMI and central obesity have indicated that individuals
with obesity exhibited lower antibody titers in response to vaccination compared to those
of a healthy weight [4–6,192]. This observation highlights a potential early decline in
vaccine-induced antibody levels correlated with higher obesity rates. Consequently, the
anticipated protective effects of SARS-CoV-2 vaccination may be diminished in individuals
with obesity relative to their healthy-weight counterparts [4]. The results were challenged
by other researchers [7]. The discrepancies are due to the cohort analysis and the possible
involvement of factors besides obesity, as pointed out by Zimmerman and Curtis [182].
No specific data of the cohorts were likely obtained from the reports that impaired en-
docrinological responses are responsible for the decreased responses reported in individuals
with BMI.

Ou et al. [193] performed a meta-analysis of the literature, examining antibody re-
sponses to COVID-19 vaccinations among individuals with and without obesity. This
meta-analysis incorporated the findings from eleven studies, five of which provided abso-
lute values of antibody titers for both the obese and non-obese groups. The results indicated
that the obese population exhibits a statistically significant association with lower antibody
titers following COVID-19 vaccination [193]. Similarly, Faizo et al. [194] reported compara-
ble findings. Their study analyzed sera from a vaccinated low number of obese individuals
(n = 73) alongside controls with a normal BMI (n = 46). The samples were analyzed for
total anti-S protein and neutralizing antibodies. Additionally, a nucleocapsid ELISA was
employed to differentiate between immunity obtained solely through vaccination and
acquired through a combination of vaccination and recovery from infection. This study
also revealed a decrease in vaccine-induced neutralizing humoral immunity among obese
participants, a phenomenon observed regardless of gender, previous infection recovery, and
the time elapsed since the last vaccination [194]. Even though the reports suggest a decrease
in antibody response in obesity, well-controlled assays are essential. Several factors, such
as vitamin D deficiency and gender, endocrine function, environmental factors, vaccine
dose, adjuvants, route of administration, and malnutrition, should be analyzed carefully.
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5.4. Heterleogous Vaccination: COVID-19 Vaccines

During the COVID-19 pandemic, several countries considered using a boosting vac-
cine that was different from the first vaccine treatment. Shaw and coworkers [195] con-
ducted a study investigating the durability of immune response to viral vector, mRNA,
and protein-based COVID-19 vaccine platforms used in homologous and heterologous
priming combinations, which will guide future vaccine platform selection. The study
was a single-blinded trial in which adults ≥ 50 years old, previously immunized with
single-dose “ChAd” (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, and Astrazeneca) or “BNT”
(BNT162b2, tozinameran, Comirnaty, and Pfizer/BioNTech), were randomized 1:1:1 to
receive a second dose 8–12 weeks later with either the homologous vaccine or “Mod”
(mRNA-1273, Spikevax, or Moderna) or “NVX” (NVX-CoV2373, Nuvaxovid, or Novavax).
Immunological follow up and safety monitoring took place over nine months. Antibody
and cellular assays were analyzed for individuals without evidence of COVID-19 infection.

The results show that heterologous priming schedules utilizing ChAd vaccines demon-
strate a more significant immunogenic response over time than ChAd/ChAd regimens.
Similarly, treatment schedules initiated with BNT vaccines followed by a second dose of
either mRNA vaccine exhibit superior long-term immunogenicity relative to BNT/NVX
combinations [195]. The amount of neutralizing antibody was higher with the BNT/Mod
combination. The authors concluded that mixed vaccination schedules incorporating novel
vaccine platforms, particularly those deployed during the COVID-19 pandemic, indicate
that heterologous priming may be a viable option to consider earlier in future pandemic
responses [195].

Interestingly, the authors [195] reported that the immunogenic response to NVX was
significantly decreased in obese individuals, and T-cell responses in BNT/BTN negatively
correlated with BMI. At the same time, the BNT/Mod showed the reverse trend. Even
though no apparent statistical differences were recorded in gender, female participants
responded more than males in all scheduled vaccinations except BNT/NVX, and the decay
of immune response was less in females with the ChAd/NVX scheme than in males.
Sheehan et al. [196] showed a decrease in neutralizing antibodies following multiple doses
of BNT162b2, which partially supported the results of Shaw et al. [195]. These results
suggest that the vaccination schemes are critical, and that heterologous immunization may
decrease the factors affecting vaccine response.

5.5. Gender, Thyroid Function, and Vaccine Response

Sex-related differences in immune cell function are linked to the expression of genes
located on the X or Y sex chromosomes and variations in autosomal gene expression within
immune cells that arise from several hormone receptor signaling pathways and epigenetic
modifications. These differences in immune function are dynamic, evolving throughout
the lifespan and during various reproductive stages [56,63,197]. Gender-related variations
represent a significant potential source of variability that influences immune response to
vaccination (analyzed in Table 3). Females and males exhibit distinct differences in their
innate, humoral, and cell-mediated immune responses to vaccines. The female gender
has been reported to have a higher incidence and severity of adverse effects following
vaccination, including symptoms such as fever, pain, and inflammation [198].

Pregnancy can further modulate immune responses to vaccines. Following immuniza-
tion against pathogens, such as influenza, yellow fever, rubella, measles, mumps, hepatitis
A and B, herpes simplex virus type 2, rabies, smallpox, dengue virus, and SARS-CoV-2,
neutralizing antibody responses in adult women may be up to twice as high as those
observed in men [199]. Women are also more likely to experience severe adverse reactions,
such as localized and systemic pain, inflammation, fever, and hypersensitivity reactions.
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It has often been suggested that the greater incidence of adverse events among women
is attributable to sociocultural behaviors and habits rather than to biological differences,
mainly since the data regarding adverse events are typically collected through passive
reporting mechanisms [200,201].

Dissection of the human immune response to the gold standard vaccine (yellow fever
virus 17D), composed of live-attenuated viruses, has been based on several systems biology
studies to demonstrate that the transcriptional profiles of innate immunity genes, including
TLR and interferon gene expression, immediately after vaccination with yellow fever virus
17D are predictive of subsequent immune responses [202]. Most adverse events following
yellow fever virus vaccination reported to the Vaccine Adverse Event Reporting System
(VAERS) between 2000 and 2006 were mild and self-limiting. As VAERS is a passive
reporting system, it should also be noted that women are more likely to report adverse
events than men [202]. In addition, the immune response to the yellow fever virus 17D
vaccine was higher in females than in males, as has been described in several research
studies for most vaccines, with some exceptions [203,204].

Pertussis infection is more common in women than in men. However, the variability
in the sources of these observations makes it difficult to estimate the magnitude and
consistency of sex differences by age. To assess this issue, Peer et al. [205] used meta-
analytic methods to evaluate national pertussis incidence rates by sex and age group in
nine countries between 1990 and 2017. The authors concluded that the excess incidence
of pertussis among women, especially in infants and very young children, is unlikely to
be due to differences in exposure [205]. Future studies should take sex into account to
better understand the mechanisms affecting disease incidence, with possible implications
for disease control.

Boef et al. [206] systematically re-analyzed childhood vaccination studies conducted in
the Netherlands for sex differences in IgG responses. Six studies with IgG determinations
in 1577 children after childhood pneumococcal vaccination (PCV7/PCV10/PCV13) and/or
DTaP-IPV-Hib(-HepB) or DTaP-IPV preschool booster were included. For most vaccine
antigens investigated, there were no consistent differences in vaccine-induced IgG levels
and gender. Vaccine-induced pneumococcal IgG levels were slightly higher in girls, but
only between the primary series and the 11-month booster. These results and similar
reactogenicity and vaccine failure/efficacy support the consistent childhood vaccination
schedule in the Dutch national immunization program [206].

The role of thyroid hormones in immune and vaccine response is not fully under-
stood [207]. Recent studies using mRNA vaccine have shown that the response of patients
with autoimmune thyroiditis is similar to that of controls; however, the vaccine may affect
thyroid function [208]. On the other hand, the response to the same vaccine in patients with
Hashimoto thyroiditis is higher than that of controls [209]. There are still many unanswered
questions in this field related to sex and obesity, and it requires more research.

6. Microbiota
In recent years, several authors have postulated the possible role of microbiota in

vaccine response [210,211]. Some have also added that sex hormones will modulate gut
microbiota, so the vaccine’s efficiency may be related to this event [211]. Even though the
conclusions of those reports were based on analyzing different cohorts from different areas
of the world, most of the trials were performed with a limited number of individuals and
with little information about the volunteers [208]. As pointed out by Syromyatnikov and
coworkers [212], populations are heterogeneous, and the relationship of gut microbiota
with a disease may depend on several factors: diet, may be affected by religion, environ-
ment, genetic background, and others. In the specific case of obesity, several bacterial
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families have been linked, depending on the country. In the USA, Rummicocaceae and Ox-
olobacter families have been associated with obesity; however, in other countries, Firmicutes,
Bacteroidota, and Clostridiales, among others, have been considered relevant [212].

An analysis of the heterogeneous population in the United States reveals a high
incidence of overweight and obesity, as indicated by the World Health Organization’s
guidelines [213]. When further examined by race, it is evident that African Americans and
Hispanic Latinos exhibit a higher prevalence of overweight and obesity in comparison to
White and Asian Americans, the latter group reporting the lowest incidence rates [214].
Gender-specific data indicate that approximately 80% of African American women are
classified as overweight or obese, with these individuals exhibiting a greater likelihood of
obesity than their non-Hispanic White and Asian American counterparts, with respective
rates of 50% and 90% [215,216]. Stanislawski et al. [215] report suggests that the correlation
between lower alpha gut microbiota diversity and elevated BMI may be particularly pro-
nounced among non-Hispanic White populations and individuals of higher socioeconomic
status. In contrast, the relationship between increased relative abundance of Prevotella, low
beta diversity in gut microbiota, and BMI appears more significant in Black and Hispanic
populations [217].

Norton and coworkers [218] used the BNT162b2 COVID-19 mRNA vaccine to show
similar immune responses to normal mice in a mouse model using antibiotic-depleted
germ-free C57BL/6J mice. Moreover, the authors performed fecal transplants on the germ-
free mice, showing a decreased response compared to the not-transplanted mice [218].
Even though this report is on a mouse model, it raises an interesting question regarding the
connection between microbiota and immune response to vaccines.

Inulin treatment in kidney transplant patients with dysbiosis increased the amount of
Bifidobacterium, which is associated with enhanced vaccine responses [219]. Despite this
increase in Bifidobacterium, no differences were encountered in the in vitro neutralization
of live SARS-CoV-2 virus at 4 weeks following a third vaccination [219]. It can be con-
cluded that some of the previous assumptions have to be re-analyzed in well-controlled
clinical trials.

The gut microbiota phenotypes associated with obesity may differ based on gender,
race, ethnicity, and related factors such as dietary habits and socioeconomic status. Further-
more, microbiome studies often face limitations due to small sample sizes, which complicate
exploring intricate interaction effects. Modifications in microbiota do not necessarily result
in a more efficient immune response [220]. Significantly, non-White populations are greatly
underrepresented in cohorts, which presents substantial barriers to fully understanding
population-level patterns in the microbiome, obesity, gender, and vaccine relationships.

Recent studies have facilitated a preliminary understanding of the thyroid–gut axis,
suggesting that intestinal microbiota and their metabolites may influence the thyroid gland
directly or indirectly [221–223]. This influence may occur through mechanisms such as
the uptake of intestinal microelements, the conversion and storage of iodothyronines,
and the regulation of immune responses [221–223]. These findings provide valuable
insights into the pathogenesis of thyroid disorders and potential clinical management
strategies [221–223]. However, the existing research on the relationship between gut
microbiota and thyroid function has only scratched the surface of this complex interaction.
There remains a pressing need for more comprehensive clinical data and foundational
experiments to clarify the specific relationships and mechanisms at play.

7. Limitations of the Studies Involving Overweight and Obesity
Overweight and obesity represent significant challenges in human healthcare [213].

Nonetheless, advancements in the scientific research and therapeutic interventions have
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been comparatively constrained. The insufficient correlation between animal models
and human subjects is a primary obstacle. While murine models benefit from defined
genetic backgrounds, established physiological responses, and simplified intervention and
sample analysis methods, human participants exhibit high heterogeneity. This variability
complicates sample collection and analysis, rendering interpretation of the data often
challenging. Moreover, the conclusions drawn from clinical trials and meta-analyses are
limited, given the many parameters that must be considered and usually are not reported
in published articles.

Other limitations in vaccine studies include race, socioeconomic status, malnutri-
tion, environmental conditions, and others, as described by Zimmerman and Curtis [182].
General conclusions based on partial information can lead to critical bias in the analysis
of the results and, consequently, in the design of new vaccines or strategies to enhance
vaccine efficiency.

8. Future Perspectives
Chronic unresolved systemic and adipose tissue inflammation significantly contributes

to the onset of obesity-related cardiometabolic diseases. While pharmaceuticals targeting
pro-inflammatory cytokines or inflammasome activation have received clinical approval,
their widespread application is often limited by severe adverse effects, including weight
gain and increased susceptibility to infections. These factors hinder their broader clinical
implementation. There remains a pronounced gap in the availability of biomarkers that
can effectively differentiate between acute and chronic inflammation and assess the func-
tionality of distinct leukocyte populations. Developing such biomarkers would enhance
personalized treatment approaches and facilitate the monitoring of therapeutic interven-
tions. The resolution phase of inflammation is an active and regulated process governed
by specialized pro-resolving mediators, which have demonstrated efficacy in alleviating
obesity-related inflammation and systemic disease in experimental models. This area
represents a significant opportunity for therapeutic advancement.

Recent technological advancements are facilitating the development of more effec-
tive and innovative vaccines and adjuvants. The primary objective of these efforts is to
restore inflammatory and immune homeostasis while maintaining other essential physio-
logical processes. This aim may be accomplished by enhancing leptin sensitivity through
leptin-based therapeutic strategies, encompassing synthetic or modified leptin and phar-
maceuticals that selectively target leptin-induced pathways [224,225].

The use of GLP-1 therapies for obesity has generated a new area of research. The GLP-1
receptor is a negative costimulatory receptor [226], which could lead to possible use in
cancer and other diseases. Van Niekerk and coworkers [227] postulated in a recent review
that the response to vaccines may be lowered due to the effect of the drug on immune
cells; however, a system of delivery or modification of the pharmacological strategies may
facilitate the therapeutic effect of the drug without affecting the immune response. There is
still room for improvement in this area.

It is also critical to analyze the possibility of autoimmune disease in the process of
adipose tissue dysregulation that could lead to a less effective response [142]. Prolonged
SARS-CoV-2 infection and other chronic viral diseases [107,188,228,229] have been related
to an increased incidence of autoimmunity. Conversely, the mechanism by which obesity
is linked to the generation of autoimmune disease and circulating autoantibodies is still a
matter of research.

Emerging technologies aimed at enhancing immune responses, including innovative
adjuvants, advanced delivery systems, and alternative vaccine administration routes, have
the potential to improve vaccine efficacy significantly [230]. For instance, intranasal or oral
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vaccines present a viable solution to the challenges posed by issues related to overweight
and obesity. Another solution is nanotechnology to enhance antigen absorbance and
distribution in the microenvironment to induce a better response [231]. In summary, a
future solution in this complex field is highly possible. However, as shown by Shawn and
coworkers [195], simple solutions, such as heterologous vaccinations, may solve critical
issues, especially in underdeveloped countries where vaccination with new technologies
may not be affordable.

9. Conclusions
In the current review, summarized in Figure 3, we have outlined the most signif-

icant aspects of adipose tissue physiology, the influence of sex hormones, adipokines,
associated cytokines, and the presence of local immune cells under normal conditions
and during inflammatory responses. Additionally, we have examined the role of sex hor-
mones in these processes. Despite our thorough investigation, we have only partially
addressed the critical components necessary for understanding the reasons behind the
diminished vaccine responses observed in specific obese individuals. Further research is
essential in this domain, particularly considering the growing prevalence of overweight and
obesity globally.
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Figure 3. A summary of the points analyzed in this review. The description of immune cells involved
in brown and lean adipose tissue, the process that induces the formation of white adipose tissue,
and the effect of exercise and bariatric surgery. On the right is the process related to inflammation,
which involves significant metabolic and immune response-related changes, including autoimmunity.
Subclinical inflammation has been described in overweight and obesity (metabolic syndrome) and
has been involved in several diseases.

From our perspective, resting adipose tissue is characterized by a tolerogenic environ-
ment, which does not influence insulin resistance or lipid metabolism and, consequently,
does not impact the immune response to vaccinations. In contrast, subclinical inflamed adi-
pose tissue, marked by immune cell migration and the production of local and peripheral
pro-inflammatory cytokines and adipokines, does influence responses to infections and
vaccines. To better delineate this difference, it is essential to identify specific biomarkers that
account for variables such as gender, sex hormones, the hypothalamic–pituitary–adrenal
axis, thyroid hormones, nutritional factors, and both genetic and epigenetic modifications.
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The vaccines developed to combat the SARS-CoV-2 virus have introduced a novel
framework for analyzing the vaccination process. The heterologous vaccination results
have provided an intriguing possibility of enhancing immune response and probably
decreasing unwanted side effects. Nevertheless, further research is essential to understand
the limitations of these vaccines, particularly regarding their safety, efficacy, and overall
effectiveness within the population.
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